Cite the Following Article
Machine learning-guided strategies for reaction conditions design and optimization
Lung-Yi Chen and Yi-Pei Li
Beilstein J. Org. Chem. 2024, 20, 2476–2492.
https://doi.org/10.3762/bjoc.20.212
How to Cite
Chen, L.-Y.; Li, Y.-P. Beilstein J. Org. Chem. 2024, 20, 2476–2492. doi:10.3762/bjoc.20.212
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 11.0 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Schweidtmann, A. M.; Schwaller, P. Adaptive experimentation and optimization in organic chemistry. Beilstein Journal of Organic Chemistry 2025, 21, 2367–2368. doi:10.3762/bjoc.21.180
- Sun, X.; Liu, J.; Mahjour, B.; Jensen, K. F.; Coley, C. W. Data-driven recommendation of agents, temperature, and equivalence ratios for organic synthesis. Chemical science 2025, 16, 18176–18189. doi:10.1039/d5sc04957a
- Osaro, E.; Karpinski, N.; Alornyo, S.; Ighalo, J. O. Artificial intelligence in materials science and chemistry: Past, present and future trajectories. Materials Today Chemistry 2025, 49, 103115. doi:10.1016/j.mtchem.2025.103115
- Zacate, S. B.; Dantas, J. A.; Lin, S.; Doyle, A. G.; Sigman, M. S. Considerations in Pursuing Reaction Scope Generality. Angewandte Chemie (International ed. in English) 2025, 64, e202511091. doi:10.1002/anie.202511091
- Zacate, S. B.; Dantas, J. A.; Lin, S.; Doyle, A. G.; Sigman, M. S. Considerations in Pursuing Reaction Scope Generality. Angewandte Chemie 2025, 137. doi:10.1002/ange.202511091
- Noorpoor, Z.; Rahmani, M.; Nikfarjam, Z.; Bagheri, K. A review of progress in molecular dynamics modeling for isobutane alkylation: Product optimization and future perspectives. Journal of Industrial and Engineering Chemistry 2025, 149, 259–274. doi:10.1016/j.jiec.2025.02.018
- Gong, Z.; Zhang, C.; Song, D.; Xia, W.; Shen, B.; Su, W.; Duan, H.; Su, A. ChemReactSeek: an artificial intelligence-guided chemical reaction protocol design using retrieval-augmented large language models. Chemical communications (Cambridge, England) 2025, 61, 13137–13140. doi:10.1039/d5cc03155a
- Dash, D. K.; Pattnaik, S.; Namdeo, A. The role of artificial intelligence in drug development: enhancing pharmaceutical chemistry through machine learning and predictive modeling. Drug development and industrial pharmacy 2025, 51, 1430–1438. doi:10.1080/03639045.2025.2548839
- Liao, H.-C.; Lin, Y.-H.; Peng, C.-H.; Li, Y.-P. Directed Message Passing Neural Networks for Accurate Prediction of Polymer–Solvent Interaction Parameters. ACS Engineering Au 2025, 5, 530–539. doi:10.1021/acsengineeringau.5c00027
- Chowdhury, S.; Ghosh, A.; Acharya, S.; Saha, S.; Pal, P. K.; Roy, S.; Lahiri, S. K. Transforming chemical process engineering: The role of AI and machine learning in revolutionizing process systems. The Canadian Journal of Chemical Engineering 2025. doi:10.1002/cjce.70032
- Qiu, J.; Zhu, L.; Feng, Z.; Luo, Z.; Wang, L. A revolutionary paradigm in chemistry and materials science research: self-driving laboratories. Chemical communications (Cambridge, England) 2025, 61, 10026–10038. doi:10.1039/d5cc01959a
- Chen, L.-Y.; Li, T.-Y.; Li, Y.-P.; Chen, N.-Y.; You, F. Exploring Chemical Space with Chemistry-Inspired Dynamic Quantum Circuits in the NISQ Era. Journal of chemical theory and computation 2025, 21, 6653–6665. doi:10.1021/acs.jctc.5c00305
- Harnik, Y.; Shalit Peleg, H.; Bermano, A. H.; Milo, A. Data efficient molecular image representation learning using foundation models. Chemical science 2025, 16, 10833–10841. doi:10.1039/d5sc00907c
- Garcia‐Paredes, M. C.; Ghanekar, P. G.; Chambers, R. K.; Schmitt, A. D.; Cavanagh, K. L.; Woerly, E. M. doi:10.1002/0471266949.bmc319
- Lima Neto, J. G.; de Sousa Júnior, P. G.; Dari, D. N.; Aires, F. I. d. S.; Dos Santos, K. M.; de Castro Bizerra, V.; da Silva Sousa, P.; Simão Neto, F.; de Sousa Rios, M. A.; Lomonaco, D.; da Fonseca, A. M.; Sousa Dos Santos, J. C. Enzymatic Hydroesterification of Waste Oils: Combilipase-Assisted Ethyl Ester Synthesis via a Dual-Step Biocatalytic Process. ACS omega 2025, 10, 20623–20637. doi:10.1021/acsomega.5c01442
- Zhong, H.; Liu, Y.; Sun, H.; Liu, Y.; Zhang, R.; Li, B.; Yang, Y.; Huang, Y.; Yang, F.; Mak, F. S.; Foo, K.; Lin, S.; Yu, T.; Wang, P.; Wang, X. Towards global reaction feasibility and robustness prediction with high throughput data and bayesian deep learning. Nature communications 2025, 16, 4522. doi:10.1038/s41467-025-59812-0
- Krzyzanowski, A.; Pickett, S. D.; Pogány, P. Exploring BERT for Reaction Yield Prediction: Evaluating the Impact of Tokenization, Molecular Representation, and Pretraining Data Augmentation. Journal of chemical information and modeling 2025, 65, 4381–4402. doi:10.1021/acs.jcim.5c00359
- Kyhoiesh, H. A.; Elnaggar, A. Y.; Al-Khafaji, M.; El Azab, I. H.; Amin, A. K.; Mahmoud, M. H.; Dawood, I. I. Machine learning aided photovolatic property predictions, design and library generation of indeno-fluorene donors with lowest exciton bindings. Solar Energy 2025, 291, 113399. doi:10.1016/j.solener.2025.113399
- Song, W.; Sun, H. Local reaction condition optimization via machine learning. Journal of molecular modeling 2025, 31, 143. doi:10.1007/s00894-025-06365-0
- Jin, D.; Liang, Y.; Xiong, Z.; Yang, X.; Wang, H.; Zeng, J.; Gu, S. Application of Transformers to Chemical Synthesis. Molecules (Basel, Switzerland) 2025, 30, 493. doi:10.3390/molecules30030493