Silver(I) triflate-catalyzed post-Ugi synthesis of pyrazolodiazepines

  1. ‡,1 ,
  2. ‡,2 ORCID Logo ,
  3. 1 ORCID Logo ,
  4. 3 ORCID Logo ,
  5. 4 ,
  6. 1 and
  7. 1,2 ORCID Logo
1College of Chemistry Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, P.R. China
2Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
3Department of Chemistry, University of Eastern Finland, FI-80101 Joensuu, Finland
  1. Corresponding author email
  2. ‡ Equal contributors
Associate Editor: L. Ackermann
Beilstein J. Org. Chem. 2025, 21, 915–925. https://doi.org/10.3762/bjoc.21.74
Received 05 Feb 2025, Accepted 23 Apr 2025, Published 08 May 2025
Full Research Paper
cc by logo

Abstract

A silver(I) triflate-catalyzed post-Ugi assembly of novel pyrazolo[1,5-a][1,4]diazepine scaffolds is reported offering high yields (up to 98%) under mild conditions. The synthetic sequence involves the Ugi four-component reaction (U4CR) of pyrazole-3-carbaldehydes, primary amines, 3-substituted propiolic acids, and isocyanides, followed by a silver(I) triflate-catalyzed intramolecular heteroannulation of the resulting pyrazole-tethered propargylamides occurring in a 7-endo-dig fashion. The approach is scalable and tolerates a diverse range of substitution patterns.

Introduction

Synthetic chemists are continuously involved in the development of methodologies for accessing new heterocyclic scaffolds that resemble naturally occurring products and biologically active molecules . Nitrogen heterocycles draw particular attention due to their modular hydrogen bond donor/acceptor profile that can be tuned by varying the nitrogen position and the degree of unsaturation as well as by fusion with other rings .

Benzodiazepines, which contain a seven-membered diazepine core fused to a benzene ring, are recognized as privileged scaffolds and are well-known for their use as anxiolytics, hypnotics, and muscle relaxants (Figure 1) . Diazepam, sold under the brand name Valium, is among the first marketed medications of the benzodiazepine family . Alprazolam, sold under the brand name Xanax, is a fast-acting, potent tranquilizer with moderate duration, belonging to the triazolobenzodiazepine family . It is derived through bioisosteric replacement of the benzodiazepine amide moiety with a triazole ring. Replacements of the benzene ring with thiophene and even with pyrrole are also known. Premazepam, which features a pyrrolodiazepine core, has been studied both alone and in combination with diazepam for its antianxiety and sedative effects . Flumazenil comprises an imidazobenzodiazepine scaffold and its intravenous administration is used to treat benzodiazepine overdoses and to reverse anesthesia . The imidazo[4,5-d][1,3]diazepine core is present in pentostatin and coformycin, which are naturally occurring N-nucleoside inhibitors of adenosine deaminase, known for their antibiotic and anticancer properties . These examples highlight the importance of developing novel synthetic methods to access diazepines fused with other nitrogen-containing heterocycles towards their broader exploration in high-throughput screening for identifying new drug candidates.

[1860-5397-21-74-1]

Figure 1: Representative diazepine-fused heterocycles.

Traditional synthetic methods for producing medium-ring nitrogen-containing heterocycles often involve complex procedures and harsh reaction conditions, resulting in limited substituent and scaffold diversity . In this regard, multicomponent reactions (MCRs) have gained increasing attention for their operational simplicity, efficiency, robustness, atom economy, and potential for diversity-oriented synthesis . For example, the Ugi four-component reaction (U4CR), involving a carbonyl compound, a primary amine, a carboxylic acid, and an isocyanide, provides a straightforward method for constructing dipeptide-like adducts . These adducts can subsequently be rigidified into heterocyclic peptidomimetics through various post-MCR transformations .

The construction of benzodiazepine cores has also been extensively explored through various post-Ugi transformations. In 2009, Torroba and co-workers developed a strategy towards β-turn mimetic benzo[e][1,4]diazepines 6 involving the Ugi reaction between arylglyoxals 1, benzylamines 2, o-azidobenzoic acid (3), and cyclohexyl isocyanide (4a), followed by a triphenylphosphine-promoted tandem Staudinger/aza-Wittig cyclization (Scheme 1a) . The overall strategy was enabled by the presence of an azide group in the carboxylic acid component 3 and additional keto-carbonyl group in aryl glyoxal 1. This approach was further advanced by Ding's group to produce a broader range of benzodiazepines with diverse substitution patterns by shuffling the necessary functional groups within the Ugi reaction components . In 2015, García-Valverde and co-workers described an alternative synthesis of benzo[e][1,4]diazepines 6, exploring the nitro group of 2-nitrobenzoic acid as a masked amino group. The release was achieved through the post-Ugi reduction of the nitro group with SnCl2 triggering concomitant intramolecular condensation with the arylglyoxal-derived keto-carbonyl group . In 2024, the same group streamlined this strategy by utilizing unprotected anthranilic acids, enabling the assembly of benzo[e][1,4]diazepines 6 directly during the Ugi reaction step .

[1860-5397-21-74-i1]

Scheme 1: Post-Ugi synthesis of benzodiazepines and heteroaryl-fused diazepines.

In 2013, Van der Eycken and co-workers employed the U4CR of ortho-halogenated benzaldehydes 7, primary amines 2, 3-substituted propiolic acids 8, and isocyanides 4 to synthesize propargylamides 9. These propargylic Ugi adducts 9 were subsequently subjected to a Cu-catalyzed tandem azide–alkyne cycloaddition/Ullmann coupling resulting in the formation of the tricyclic triazolo[1,5-a][1,4]benzodiazepine scaffold 10 (Scheme 1b) .

Triple bond-containing Ugi adducts showed a great promise for the assembly of various seven-membered nitrogen-containing heterocyclic cores through transition-metal-catalyzed alkyne hydroarylations and hydroalkoxylations .

In 2013, Van der Eycken and co-workers described an intramolecular cationic gold-catalyzed post-Ugi heteroannulation of imidazoles with activated alkynes for the diversity-oriented synthesis of imidazo[1,4]diazepines 13 from Ugi-derived propargylamides 12 (Scheme 1c) . In 2019, Li, Yang, Van der Eycken and co-workers reported a modification of this strategy relying on thermal activation instead of cationic gold catalysis . The approach worked particularly well with substrates featuring terminal alkynes.

Inspired by these developments and taking into account chemical and pharmacological importance of fused pyrazole derivatives , we herein report the post-Ugi assembly of novel pyrazolo[1,5-a][1,4]diazepine scaffolds 16 (Scheme 1d). The synthetic sequence involves an Ugi reaction of pyrazole-3-carbaldehydes 14, primary amines 2, 3-substituted propiolic acids 8, and isocyanides 4 followed by a silver-catalyzed heteroannulation of the resulting Ugi adducts 15. While several protocols for synthesizing medium-ring-fused pyrazoles have been reported recently , our method offers notable advantages, including operational simplicity, the accessibility of starting materials, and a diversity-oriented approach.

Results and Discussion

First, we prepared a series of acyclic pyrazole-tethered propargylamide precursors 15 via the Ugi four-component reaction (U4CR) of 1H-pyrazole-3-carbaldehydes 14ad, primary amines 2al, propiolic acids 8ad, and isocyanides 4ae. By conducting the reactions in methanol at 70 °C, we obtained the desired Ugi adducts 15ax in fair to good yields of 26–72% allowing for the variation of substituents across all components of the U4CR (Scheme 2). Notably, the Ugi reaction toward substrate 15a, when performed at room temperature, proceeded with lower efficiency compared to the reaction at 70 °C, leaving some of the starting 1H-pyrazole-3-carbaldehyde (14a) unreacted.

[1860-5397-21-74-i2]

Scheme 2: Synthesis of pyrazole-tethered propargylamides 15 via U4CR. Conditions: Unless otherwise specified, the reactions were run on a 1.0 mmol scale in methanol (5 mL). The reactions were conducted in screw cap vials at 70 °C for 24 hours and isolated yields are reported. aConducted on a 6.0 mmol scale. bConducted at room temperature. cConducted on a 2.0 mmol scale. dConducted on a 1.5 mmol scale.

Propargylamide 15a was selected as a model substrate to optimize the reaction conditions for the intramolecular heteroannulation leading to the pyrazolo[1,5-a][1,4]diazepine scaffold. Our initial choice was to investigate the use of silver(I) triflate (AgOTf) as a catalyst in toluene, given its previously demonstrated efficiency in various transformations involving the activation of triple bonds towards nucleophilic attack by nitrogen nucleophiles . When the reaction was conducted with 5 mol % of AgOTf in toluene at 80 °C for 20 hours, pyrazolo[1,5-a][1,4]diazepine 16a was obtained in 46% yield, while complete conversion of the starting material 15a was not achieved (Table 1, entry 1). Increasing the temperature to 90 °C and the catalyst loading to 10 mol % enabled full conversion of 15a and improved the yield of product 16a (Table 1, entries 2 and 3). The use of other silver salts including AgBF4, Ag(NTf)2 and AgNO3 did not lead to improved results, with Ag(NTf)2 being particularly ineffective (Table 1, entries 4–6). Next, various solvents were screened with TFE, DCE, acetonitrile, and chlorobenzene providing low to moderate yields, whereas dioxane emerged as the preferred solvent allowing to bring the yield of pyrazolodiazepine 16a to 66% (Table 1, entries 7–11). Finally, further increasing the catalyst loading to 20 mol % resulted in an additional improvement in the yield of 16a in both toluene and dioxane (Table 1, entries 12 and 13). The best result was achieved using 20 mol % of AgOTf in dioxane, with the reaction conducted at 90 °C for 7 hours furnishing 16a in an excellent 94% yield (Table 1, entry 13). Catalytic systems based on other transition metals including Cu(OTf)2 and the AuPPh3Cl/AgOTf combination were also tested (Table 1, entries 14 and 15). However, their performance was significantly poorer compared to AgOTf.

Table 1: Optimization reactions of the intramolecular post-Ugi heteroannulation.a

[Graphic 1]
Entry Catalyst Solvent Time [h] Temp. [°C] Yield of 12 [%]b Conversion [%]
1 AgOTf (5 mol %) toluene 20 80 46 65
2 AgOTf (5 mol %) toluene 27 90 49 100
3 AgOTf (10 mol %) toluene 12 90 60 100
4 AgBF4 (10 mol %) toluene 12 90 49 100
5 Ag(NTf)2 (10 mol %) toluene 12 90 2 64
6 AgNO3 (10 mol %) toluene 12 90 45 100
7 AgOTf (10 mol %) TFE 12 90 16 27
8 AgOTf (10 mol %) dioxane 12 90 66 100
9 AgOTf (10 mol %) DCE 12 90 27 50
10 AgOTf (10 mol %) chlorobenzene 12 90 53 100
11 AgOTf (10 mol %) acetonitrile 12 90 24 100
12 AgOTf (20 mol %) toluene 7 90 82 100
13 AgOTf (20 mol %) dioxane 7 90 94c 100
14 AuPPh3Cl/AgOTf (5 mol %) DCM 24 rt 1 31
15 Cu(OTf)2 (20 mol %) toluene 12 90 4 100
16 dioxane 7 90 d d

aAll reactions were carried out on a 0.2 mmol scale in 1.0 mL of solvent in a sealed vial. bDetermined by 1H NMR spectroscopy using 2,4,6-trimethoxybenzaldehyde as internal standard. cAlso, corresponds to the isolated yield. dNo consumption of 15a was observed.

To evaluate the scope and limitations of the optimized protocol (Table 1, entry 13), a series of U4CR-derived pyrazole-tethered propargylamides 15 was subjected to the silver(I) triflate-catalyzed heteroannulation into pyrazolo[1,5-a][1,4]diazepines 16 (Scheme 3). Employing substrates 15ad, derived from different 1H-pyrazole-3-carbaldehydes, the corresponding pyrazolodiazepines 16ad were obtained in consistently high yields of 84–96%. Notably, the synthesis of the parent pyrazolodiazepine 16a was scaled up to 3.5 mmol without a substantial decrease in isolated yield.

[1860-5397-21-74-i3]

Scheme 3: Scope of the silver(I) triflate-catalyzed synthesis of pyrazolo[1,5-a][1,4]diazepines. Conditions: Unless otherwise specified, the reactions were run on 0.2 mmol scale using 20 mol % of AgOTf in dioxane (1 mL). The reactions were conducted in screw cap vials at 90 °C for 7 hours and isolated yields are reported. aConducted on a 3.5 mmol scale. bConducted on a 0.5 mmol scale.

To explore the influence of the amine component on the process, an extensive subset of aniline-derived substrates 15el was tested. The process proceeded efficiently in all cases, yielding pyrazolodiazepines 16el and demonstrating tolerance for various substituents on the aniline-derived aromatic fragment, including alkyl, halogens, electron-donating alkoxy groups, as well as electron-withdrawing trifluoromethyl and nitro groups. Furthermore, substrates 15mo derived from aliphatic amines, also performed well, furnishing pyrazolodiazepines 16mo in up to 89% yield. The structure of 16m, a representative compound of this series, was confirmed through single-crystal X-ray diffraction (scXRD) analysis.

Another set of pyrazolodiazepines 16pv was readily obtained from the substrates 15pv stemming from various 3-substituted propiolic acids and aliphatic or aromatic isocyanides. Finally, the annulation of substrates 15w and 15x, featuring a terminal alkyne, also proceeded in a 7-endo-dig fashion, yielding pyrazolodiazepines 16w and 16x, respectively. Such an outcome is notable, as related carbocyclizations often switch to an exo mode when shifting from internal to terminal alkynes .

To demonstrate the robustness of our methodology, we tested a telescope procedure in which, after the Ugi step, the product was not isolated. Instead, the reaction mixture was concentrated and directly subjected to the subsequent heteroannulation step. This approach proved to be feasible, affording the model pyrazolo[1,5-a][1,4]diazepine 16a in 65% overall yield over two steps (Scheme 4).

[1860-5397-21-74-i4]

Scheme 4: Telescope procedure for the synthesis of 16a.

The tentative mechanism for the studied silver(I)-catalyzed intramolecular heteroannulation reaction is depicted in Scheme 5. The process begins with the π-coordination of the silver catalyst to the triple bond in the Ugi-adduct 15a generating intermediate A. This is followed by a nucleophilic attack by the pyrazole nitrogen on the activated alkyne in an endo-dig fashion, forming a 7-membered ring. The resulting intermediate B undergoes proton transfer from the second pyrazole nitrogen to the vinyl silver moiety yielding pyrazolo[1,5-a][1,4]diazepine 16a and regenerating the silver catalyst. Methylation of either pyrazole nitrogen atom prevents the reaction by blocking the nucleophilic attack on the triple bond or the subsequent proton transfer step, thereby preventing substrates 15y and 15z from undergoing the described heteroannulation. Additionally, the alternative carbocyclization pathway cannot occur, as the vacant 4C position of the pyrazole ring lacks sufficient nucleophilicity.

[1860-5397-21-74-i5]

Scheme 5: Tentative mechanism for the silver-catalyzed heteroannulation.

To further expand the scope of our chemistry, we conducted a series of reductive post-assembly modifications of the pyrazolo[1,5-a][1,4]diazepine core, following our recently developed strategy for enriching the sp3 character in post-Ugi scaffolds (Scheme 6) . First, we attempted heterogeneous hydrogenation of the alkene functionality in compound 16a under 1 atm hydrogen pressure using Pd/C as a catalyst. Although the reaction proved sluggish, we were able to drive it to completion over a prolonged reaction time of 14 days, obtaining a separable mixture of the major cis and minor trans diastereomers of the sp3-enriched pyrazolodiazepine 17. The relative configuration of the stereocenters in the major cis isomer of 17 was established via scXRD analysis. Both diastereomers of 17 were found to be amenable to chemoselective amide reduction with LiAlH₄, which led to a further decrease in the degree of unsaturation of the pyrazolodiazepine core, while the more sterically hindered exocyclic amide moiety remained intact. However, both reactions were accompanied by partial epimerization, and careful kinetic control was therefore required to obtain non-epimerized diastereomers of the resulting pyrazolodiazepine 18 as the major reaction products.

[1860-5397-21-74-i6]

Scheme 6: Reductive post-assembly modifications of the pyrazolo[1,5-a][1,4]diazepine core. aDetermined by 1H NMR spectroscopy analysis of crude reaction mixtures. bIsolated yield.

Conclusion

We have developed a straightforward, diversity-oriented approach for the synthesis of a novel pyrazolo[1,5-a][1,4]diazepine scaffold starting from readily available building blocks. The first step, the Ugi-4CR, introduces molecular diversity, while the second step, an efficient silver(I)-catalyzed heteroannulation, facilitates the formation of the pyrazolodiazepine core via alkyne activation towards the nucleophilic attack by the pyrazole nitrogen. This strategy expands the array of post-Ugi transformations leading to the formation of fused seven-membered heterocycles. A series of target pyrazolodiazepines were generated through the variation of substitution patterns on all components of the Ugi reaction while several limitations of the methodology were also identified. In addition, a sequence of reductive post-assembly modifications aimed at increasing the sp³ character of the pyrazolo[1,5-a][1,4]diazepine core was successfully implemented.

Supporting Information

Deposition Numbers 2410526 (for 16m) and 2441192 (for 17-cis) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Supporting Information File 1: Detailed descriptions of the experimental procedures, product characterization data and the copies of NMR spectra.
Format: PDF Size: 6.7 MB Download

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (No. 21971174 and 21906114), Nazarbayev University Faculty-Development Competitive Research Grants Program (11022021FD2903), Nazarbayev University Collaborative Research Program (11022021CRP1501), the start-up fund from Soochow University (Q410900714), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Cyrus Tang (Zhongying) Scholar and Jiangsu Qing-Lan Project for Young and Middle-aged Academic Leaders (2023). M.H. is grateful to the China Scholarship Council (CSC) for providing doctoral scholarships.

Author Contributions

Muhammad Hasan: investigation; methodology; validation; writing – original draft. Anatoly A. Peshkov: investigation; methodology; validation; writing – review & editing. Syed Anis Ali Shah: investigation; methodology; validation; writing – review & editing. Andrey Belyaev: investigation; methodology; validation; writing – review & editing. Chang-Keun Lim: funding acquisition; supervision; writing – review & editing. Shunyi Wang: funding acquisition; supervision; writing – review & editing. Vsevolod A. Peshkov: conceptualization; funding acquisition; methodology; supervision; writing – original draft.

Data Availability Statement

All data that supports the findings of this study is available in the published article and/or the supporting information of this article.

References

  1. Dinges, J.; Lamberth, C., Eds. Bioactive Heterocyclic Compound Classes: Pharmaceuticals; Wiley-VCH: Weinheim, Germany, 2012. doi:10.1002/9783527664450
    Return to citation in text: [1]
  2. Lamberth, C.; Dinges, J., Eds. Bioactive Heterocyclic Compound Classes: Agrochemicals; Wiley-VCH: Weinheim, Germany, 2012. doi:10.1002/9783527664412
    Return to citation in text: [1]
  3. Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B. Molecules 2020, 25, 1909. doi:10.3390/molecules25081909
    Return to citation in text: [1]
  4. Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347–361. doi:10.1016/j.cbpa.2010.02.018
    Return to citation in text: [1]
  5. Tolu-Bolaji, O. O.; Sojinu, S. O.; Okedere, A. P.; Ajani, O. O. Arab. J. Basic Appl. Sci. 2022, 29, 287–306. doi:10.1080/25765299.2022.2117677
    Return to citation in text: [1]
  6. Arora, N.; Dhiman, P.; Kumar, S.; Singh, G.; Monga, V. Bioorg. Chem. 2020, 97, 103668. doi:10.1016/j.bioorg.2020.103668
    Return to citation in text: [1]
  7. Edinoff, A. N.; Nix, C. A.; Hollier, J.; Sagrera, C. E.; Delacroix, B. M.; Abubakar, T.; Cornett, E. M.; Kaye, A. M.; Kaye, A. D. Neurol. Int. 2021, 13, 594–607. doi:10.3390/neurolint13040059
    Return to citation in text: [1]
  8. Chang, Y.; Xie, X.; Liu, Y.; Liu, M.; Zhang, H. Biomed. Pharmacother. 2024, 173, 116329. doi:10.1016/j.biopha.2024.116329
    Return to citation in text: [1]
  9. Calcaterra, N. E.; Barrow, J. C. ACS Chem. Neurosci. 2014, 5, 253–260. doi:10.1021/cn5000056
    Return to citation in text: [1]
  10. Ait-Daoud, N.; Hamby, A. S.; Sharma, S.; Blevins, D. J. Addict. Med. 2018, 12, 4–10. doi:10.1097/adm.0000000000000350
    Return to citation in text: [1]
  11. Golombok, S.; Lader, M. Br. J. Clin. Pharmacol. 1984, 18, 127–133. doi:10.1111/j.1365-2125.1984.tb02444.x
    Return to citation in text: [1]
  12. Rasimas, J. J.; Kivovich, V.; Sachdeva, K. K.; Donovan, J. W. Toxicol. Commun. (London, U. K.) 2020, 4, 25–39. doi:10.1080/24734306.2020.1752551
    Return to citation in text: [1]
  13. Gallo, A. T.; Hulse, G. J. Psychopharmacol. (London, U. K.) 2021, 35, 211–220. doi:10.1177/0269881120981390
    Return to citation in text: [1]
  14. Lee, S.; Lee, J.; Hwang, S. Y.; Ju, J.-W.; Nam, K.; Ahn, H.-J.; Lee, S.-R.; Choi, E.-K.; Jeon, Y.; Cho, Y. J. Sci. Rep. 2024, 14, 12660. doi:10.1038/s41598-024-63578-8
    Return to citation in text: [1]
  15. Showalter, H. D. H.; Putt, S. R.; Borondy, P. E.; Shillis, J. L. J. Med. Chem. 1983, 26, 1478–1482. doi:10.1021/jm00364a022
    Return to citation in text: [1]
  16. Ren, D.; Ruszczycky, M. W.; Ko, Y.; Wang, S.-A.; Ogasawara, Y.; Kim, M.; Liu, H.-w. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 10265–10270. doi:10.1073/pnas.2000111117
    Return to citation in text: [1]
  17. Chan, E.; Putt, S. R.; Showalter, H. D. H.; Baker, D. C. J. Org. Chem. 1982, 47, 3457–3464. doi:10.1021/jo00139a015
    Return to citation in text: [1]
  18. Achermann, G.; Ballard, T. M.; Blasco, F.; Broutin, P.-E.; Büttelmann, B.; Fischer, H.; Graf, M.; Hernandez, M.-C.; Hilty, P.; Knoflach, F.; Koblet, A.; Knust, H.; Kurt, A.; Martin, J. R.; Masciadri, R.; Porter, R. H. P.; Stadler, H.; Thomas, A. W.; Trube, G.; Wichmann, J. Bioorg. Med. Chem. Lett. 2009, 19, 5746–5752. doi:10.1016/j.bmcl.2009.07.153
    Return to citation in text: [1]
  19. Rogers-Evans, M.; Spurr, P.; Hennig, M. Tetrahedron Lett. 2003, 44, 2425–2428. doi:10.1016/s0040-4039(03)00078-9
    Return to citation in text: [1]
  20. Zhu, J.; Wang, Q.; Wang, M.-X., Eds. Multicomponent Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2015. doi:10.1002/9783527678174
    Return to citation in text: [1]
  21. Orru, R. V. A.; Ruijter, E., Eds. Synthesis of Heterocycles Via Multicomponent Reactions I; Topics in Heterocyclic Chemistry; Springer: Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-12675-8
    Return to citation in text: [1]
  22. Orru, R. V. A.; Ruijter, E., Eds. Synthesis of Heterocycles via Multicomponent Reactions II; Topics in Heterocyclic Chemistry; Springer: Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-15455-3
    Return to citation in text: [1]
  23. Van der Eycken, E.; Sharma, U. K., Eds. Multicomponent Reactions towards Heterocycles: Concepts and Applications, 1st ed.; Wiley-VCH: Weinheim, Germany, 2022. doi:10.1002/9783527832439
    Return to citation in text: [1]
  24. Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3210. doi:10.1002/1521-3773(20000915)39:18<3168::aid-anie3168>3.0.co;2-u
    Return to citation in text: [1]
  25. Ugi, I.; Steinbrückner, C. Angew. Chem. 1960, 72, 267–268. doi:10.1002/ange.19600720709
    Return to citation in text: [1]
  26. Dömling, A. J. Org. Chem. 2023, 88, 5242–5247. doi:10.1021/acs.joc.2c00792
    Return to citation in text: [1]
  27. Fotopoulou, E.; Anastasiou, P. K.; Tomza, C.; Neochoritis, C. G. Tetrahedron Green Chem 2024, 3, 100044. doi:10.1016/j.tgchem.2024.100044
    Return to citation in text: [1]
  28. Heravi, M. M.; Mohammadkhani, L. Adv. Heterocycl. Chem. 2020, 131, 351–403. doi:10.1016/bs.aihch.2019.04.001
    Return to citation in text: [1]
  29. Bariwal, J.; Kaur, R.; Voskressensky, L. G.; Van der Eycken, E. V. Front. Chem. (Lausanne, Switz.) 2018, 6, 557. doi:10.3389/fchem.2018.00557
    Return to citation in text: [1]
  30. Sharma, U. K.; Sharma, N.; Vachhani, D. D.; Van der Eycken, E. V. Chem. Soc. Rev. 2015, 44, 1836–1860. doi:10.1039/c4cs00253a
    Return to citation in text: [1]
  31. Tang, X.; Tao, Q.; Song, L.; Van der Eycken, E. V. Org. Chem. Front. 2024, 11, 4895–4912. doi:10.1039/d4qo01060d
    Return to citation in text: [1]
  32. Liu, C.; Voskressensky, L. G.; Van der Eycken, E. V. Chem. – Eur. J. 2024, 30, e202303597. doi:10.1002/chem.202303597
    Return to citation in text: [1]
  33. Sañudo, M.; García-Valverde, M.; Marcaccini, S.; Delgado, J. J.; Rojo, J.; Torroba, T. J. Org. Chem. 2009, 74, 2189–2192. doi:10.1021/jo8025862
    Return to citation in text: [1]
  34. Wang, Y.; Chen, M.; Ding, M.-W. Tetrahedron 2013, 69, 9056–9062. doi:10.1016/j.tet.2013.08.034
    Return to citation in text: [1]
  35. Xie, H.; Liu, J.-C.; Ding, M.-W. Synthesis 2016, 48, 4541–4547. doi:10.1055/s-0036-1588308
    Return to citation in text: [1]
  36. Xiong, J.; Wei, X.; Wan, Y.-C.; Ding, M.-W. Tetrahedron 2019, 75, 1072–1078. doi:10.1016/j.tet.2019.01.014
    Return to citation in text: [1]
  37. Pertejo, P.; Corres, N.; Torroba, T.; García-Valverde, M. Org. Lett. 2015, 17, 612–615. doi:10.1021/ol503628r
    Return to citation in text: [1]
  38. Gómez-Ayuso, J.; Pertejo, P.; Hermosilla, T.; Carreira-Barral, I.; Quesada, R.; García-Valverde, M. Beilstein J. Org. Chem. 2024, 20, 1758–1766. doi:10.3762/bjoc.20.154
    Return to citation in text: [1]
  39. Vachhani, D. D.; Kumar, A.; Modha, S. G.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Eur. J. Org. Chem. 2013, 1223–1227. doi:10.1002/ejoc.201201587
    Return to citation in text: [1]
  40. Peshkov, A. A.; Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Tetrahedron 2015, 71, 3863–3871. doi:10.1016/j.tet.2015.04.022
    Return to citation in text: [1]
  41. Zaman, M.; Hasan, M.; Peshkov, A. A.; Puzyk, A.; Wang, Y.; Lim, C.-K.; Pereshivko, O. P.; Peshkov, V. A. Tetrahedron Lett. 2023, 130, 154769. doi:10.1016/j.tetlet.2023.154769
    Return to citation in text: [1]
  42. Li, Z.; Kumar, A.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Tetrahedron 2015, 71, 3333–3342. doi:10.1016/j.tet.2015.03.103
    Return to citation in text: [1]
  43. Kumar, A.; Li, Z.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Chem. Commun. 2013, 49, 6803. doi:10.1039/c3cc42704h
    Return to citation in text: [1]
  44. Liu, C.; Van Meervelt, L.; Peshkov, V. A.; Van der Eycken, E. V. Org. Chem. Front. 2022, 9, 4619–4624. doi:10.1039/d2qo00810f
    Return to citation in text: [1]
  45. Peshkov, A. A.; Nechaev, A. A.; Pereshivko, O. P.; Goeman, J. L.; Van der Eycken, J.; Peshkov, V. A.; Van der Eycken, E. V. Eur. J. Org. Chem. 2015, 4190–4197. doi:10.1002/ejoc.201500357
    Return to citation in text: [1]
  46. Kumar, A.; Li, Z.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Org. Lett. 2013, 15, 1874–1877. doi:10.1021/ol400526a
    Return to citation in text: [1]
  47. Wu, D.; Zhang, X.; Li, Y.; Ying, S.; Zhu, L.; Li, Z.; Yang, G.; Van der Eycken, E. V. Eur. J. Org. Chem. 2019, 7678–7685. doi:10.1002/ejoc.201901511
    Return to citation in text: [1]
  48. Wang, J.; Wei, W.; Zhang, X.; Cao, S.; Hu, B.; Ye, Y.; Jiang, M.; Wang, T.; Zuo, J.; He, S.; Yang, C. J. Med. Chem. 2021, 64, 13676–13692. doi:10.1021/acs.jmedchem.1c01019
    Return to citation in text: [1]
  49. Raffa, D.; Maggio, B.; Raimondi, M. V.; Cascioferro, S.; Plescia, F.; Cancemi, G.; Daidone, G. Eur. J. Med. Chem. 2015, 97, 732–746. doi:10.1016/j.ejmech.2014.12.023
    Return to citation in text: [1]
  50. Al-Azmi, A. Curr. Org. Chem. 2019, 23, 721–743. doi:10.2174/1385272823666190410145238
    Return to citation in text: [1]
  51. Aggarwal, R.; Kumar, S. Beilstein J. Org. Chem. 2018, 14, 203–242. doi:10.3762/bjoc.14.15
    Return to citation in text: [1]
  52. Ebenezer, O.; Shapi, M.; Tuszynski, J. A. Biomedicines 2022, 10, 1124. doi:10.3390/biomedicines10051124
    Return to citation in text: [1]
  53. Li, M.-M.; Huang, H.; Pu, Y.; Tian, W.; Deng, Y.; Lu, J. Eur. J. Med. Chem. 2022, 243, 114739. doi:10.1016/j.ejmech.2022.114739
    Return to citation in text: [1]
  54. Yang, K.; Li, Z.; Sheng, Y.; Deng, J.; Song, Y.; Liu, Z.; Jia, A. Asian J. Org. Chem. 2021, 10, 3000–3004. doi:10.1002/ajoc.202100494
    Return to citation in text: [1]
  55. Dvorak, C. A.; Liang, J.; Mani, N. S.; Carruthers, N. I. Tetrahedron Lett. 2021, 67, 152843. doi:10.1016/j.tetlet.2021.152843
    Return to citation in text: [1]
  56. Mohammed, K. S.; Elbeily, E. E.; El‐Taweel, F. M.; Fadda, A. A. J. Heterocycl. Chem. 2019, 56, 493–500. doi:10.1002/jhet.3425
    Return to citation in text: [1]
  57. Thummala, Y.; Raju, C. E.; Purnachandar, D.; Sreenivasulu, G.; Doddi, V. R.; Karunakar, G. V. Eur. J. Org. Chem. 2020, 3560–3567. doi:10.1002/ejoc.201901852
    Return to citation in text: [1]
  58. Guduru, R.; Sandeep, M.; Sunil, K.; Mangina, N. S. V. M. R.; Bharath Kumar, P.; Sridhar, B.; Karunakar, G. V. Tetrahedron 2024, 168, 134340. doi:10.1016/j.tet.2024.134340
    Return to citation in text: [1]
  59. Pereshivko, O. P.; Peshkov, V. A.; Jacobs, J.; Meervelt, L. V.; Van der Eycken, E. V. Adv. Synth. Catal. 2013, 355, 781–789. doi:10.1002/adsc.201200905
    Return to citation in text: [1]
  60. Peshkov, V. A.; Pereshivko, O. P.; Sharma, S.; Meganathan, T.; Parmar, V. S.; Ermolat’ev, D. S.; Van der Eycken, E. V. J. Org. Chem. 2011, 76, 5867–5872. doi:10.1021/jo200789t
    Return to citation in text: [1]
  61. Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Adv. Synth. Catal. 2012, 354, 2841–2848. doi:10.1002/adsc.201200305
    Return to citation in text: [1]
  62. Kumar, A.; Vachhani, D. D.; Modha, S. G.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Eur. J. Org. Chem. 2013, 2288–2292. doi:10.1002/ejoc.201300132
    Return to citation in text: [1]
  63. Liu, C.; Wang, G.; Wang, Y.; Van Hecke, K.; Pereshivko, O. P.; Peshkov, V. A. Tetrahedron Lett. 2018, 59, 1823–1827. doi:10.1016/j.tetlet.2018.03.079
    Return to citation in text: [1]
  64. Amire, N.; Almagambetova, K. M.; Turlykul, A.; Taishybay, A.; Nuroldayeva, G.; Belyaev, A.; Peshkov, A. A.; Utepbergenov, D.; Peshkov, V. A. Org. Biomol. Chem. 2024, 22, 9379–9387. doi:10.1039/d4ob01270d
    Return to citation in text: [1]
  65. Hasan, M.; Nuroldayeva, G. A.; Begenov, A.; Peshkov, A. A.; Martynova, S. D.; Amire, N.; Bekbolatova, A.; Makhmet, A. M.; Yu, J.; Zaman, M.; Gong, J.; Lim, C.-K.; Belyaev, A.; Pereshivko, O. P.; Wang, S.; Peshkov, V. A. Eur. J. Org. Chem. 2025, 28, e202401124. doi:10.1002/ejoc.202401124
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities