Flexible synthetic routes to poison-frog alkaloids of the 5,8-disubstituted indolizidine-class I: synthesis of common lactam chiral building blocks and application to the synthesis of (-)-203A, (-)-205A, and (-)-219F

Naoki Toyooka, Dejun Zhou, Hideo Nemoto, H. Martin Garraffo, Thomas F. Spande and John W. Daly
Beilstein J. Org. Chem. 2007, 3, No. 29. https://doi.org/10.1186/1860-5397-3-29

Supporting Information

Supporting Information File 1: Experimental details for the synthesis of (-)-203A, (-)-205A, and (-)-219F. Experimental data which includes experimental details on the spectral instruments, elemental analyzer.
Format: DOC Size: 122.5 KB Download

Cite the Following Article

Flexible synthetic routes to poison-frog alkaloids of the 5,8-disubstituted indolizidine-class I: synthesis of common lactam chiral building blocks and application to the synthesis of (-)-203A, (-)-205A, and (-)-219F
Naoki Toyooka, Dejun Zhou, Hideo Nemoto, H. Martin Garraffo, Thomas F. Spande and John W. Daly
Beilstein J. Org. Chem. 2007, 3, No. 29. https://doi.org/10.1186/1860-5397-3-29

How to Cite

Toyooka, N.; Zhou, D.; Nemoto, H.; Garraffo, H. M.; Spande, T. F.; Daly, J. W. Beilstein J. Org. Chem. 2007, 3, No. 29. doi:10.1186/1860-5397-3-29

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Nay, B. Total synthesis: an enabling science. Beilstein journal of organic chemistry 2023, 19, 474–476. doi:10.3762/bjoc.19.36
  • Meena, M.; Malviya, B. K.; Singh, K.; Yadav, P.; Naharwal, P.; Kumari, N.; Verma, V. P.; Yadav, D. K.; Sharma, S. I2/FeCl3 Promoted Cascade Reaction of 4‐Quinazolinone, Pyridine, and Chalcone for the Synthesis of Indolizines. ChemistrySelect 2022, 7. doi:10.1002/slct.202201378
  • Brandi, A.; Cicchi, S.; Cordero, F. M. Comprehensive Heterocyclic Chemistry IV - Bicyclic 5-6 Systems With One Bridgehead (Ring Junction) Nitrogen Atom: No Extra Heteroatom. Comprehensive Heterocyclic Chemistry IV; Elsevier, 2022; pp 437–527. doi:10.1016/b978-0-12-409547-2.14938-8
  • Khan, I.; Ibrar, A.; Zaib, S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Topics in current chemistry (Cham) 2021, 379, 3. doi:10.1007/s41061-020-00316-4
  • Priya, D. D.; Lakshman, C.; Roopan, S. M. A review on various aspects of organic synthesis using Comins’ reagent. Molecular diversity 2021, 26, 1–26. doi:10.1007/s11030-020-10175-2
  • Guguloth, V.; Balaboina, R.; Paidakula, S.; Thirukovela, N. S.; Vadde, R. AgI‐promoted one‐pot synthesis of aminoindolizines via sequential Mannich‐Grignard addition and intramolecular cyclization in water. Journal of Heterocyclic Chemistry 2021, 58, 900–904. doi:10.1002/jhet.4184
  • Mohajer, F.; Ziarani, G. M.; Moradi, R. The Study of Several Synthesis Methods of Indolizidine (±)-209I and (±)-209B as Natural Alkaloids. Current Organic Chemistry 2020, 24, 516–535. doi:10.2174/1385272824666200226113022
  • Beng, T. K.; Langevin, S.; Farah, A. O.; Goodsell, J.; Wyatt, K. One-shot access to isoquinolone and (hetero)izidinone architectures using cyclic α-chloro eneformamides and cyclic anhydrides. New Journal of Chemistry 2019, 43, 5282–5286. doi:10.1039/c8nj06539j
  • Yavari, I.; Naeimabadi, M.; Halvagar, M. R. FeCl 3 -catalyzed formation of indolizine derivatives via the 1,3-dipolar cycloaddition reaction between azomethine ylides and chalcones or dibenzylideneacetones. Tetrahedron Letters 2016, 57, 3718–3721. doi:10.1016/j.tetlet.2016.07.004
  • Yashin, N. V.; Averina, E. B.; Kuznetsova, T. S.; Zefirov, N. S. Methods of synthesis and synthetic application of α-diazomethylphosphonates. Russian Chemical Bulletin 2016, 65, 877–909. doi:10.1007/s11172-016-1392-1
  • Basavaiah, D.; Veeraraghavaiah, G.; Badsara, S. S. Ketones as electrophiles in two component Baylis–Hillman reaction: a facile one-pot synthesis of substituted indolizines. Organic & biomolecular chemistry 2014, 12, 1551–1555. doi:10.1039/c3ob42064g
  • Abels, F.; Lindemann, C.; Schneider, C. A General Strategy for the Catalytic, Highly Enantio- and Diastereoselective Synthesis of Indolizidine-Based Alkaloids. Chemistry (Weinheim an der Bergstrasse, Germany) 2014, 20, 1964–1979. doi:10.1002/chem.201304086
  • Wang, X.; Tsuneki, H.; Urata, N.; Tezuka, Y.; Wada, T.; Sasaoka, T.; Sakai, H.; Saporito, R. A.; Toyooka, N. Synthesis and Biological Activities of the 3,5‐Disubstituted Indolizidine Poison Frog Alkaloid 239Q and Its Congeners. European Journal of Organic Chemistry 2012, 2012, 7082–7092. doi:10.1002/ejoc.201200974
  • Mishra, S.; Naskar, B.; Ghosh, R. CuCl catalyzed green and efficient one-pot synthesis of aminoindolizine frameworks via three-component reactions of aldehydes, secondary amines, and terminal alkynes in PEG. Tetrahedron Letters 2012, 53, 5483–5487. doi:10.1016/j.tetlet.2012.07.113
  • Singh, G. S.; Mmatli, E. E. Recent progress in synthesis and bioactivity studies of indolizines. European journal of medicinal chemistry 2011, 46, 5237–5257. doi:10.1016/j.ejmech.2011.08.042
  • Wong, H.; Garnier-Amblard, E. C.; Liebeskind, L. S. Organometallic enantiomeric scaffolding: a strategy for the enantiocontrolled construction of regio- and stereodivergent trisubstituted piperidines from a common precursor. Journal of the American Chemical Society 2011, 133, 7517–7527. doi:10.1021/ja201012p
  • Trimm, H. H. Flexible Synthesis of Poison-Frog Alkaloids of the 5,8-Disubstituted Indolizidine-Class. II: Synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B”, (-)-221I, and an Epimer of 193E and Pharmacological Effects at Neuronal Nicotinic Acetylcholine Receptors. Organic Chemistry; Apple Academic Press, 2011; pp 197–206. doi:10.1201/b12874-20
  • de Koning, C. B.; Michael, J. P.; Riley, D. L. Formal synthesis of (5R,8R,8aS)-indolizidine 209I via enaminones incorporating Weinreb amides. HETEROCYCLES 2009, 79, 935–953. doi:10.3987/com-08-s(d)68
  • Nelson, A.; Garraffo, H. M.; Spande, T. F.; Daly, J. W.; Stevenson, P. J. Facile synthesis of two diastereomeric indolizidines corresponding to the postulated structure of alkaloid 5,9E-259B from a Bufonid toad (Melanophryniscus). Beilstein journal of organic chemistry 2008, 4, 6. doi:10.1186/1860-5397-4-6
  • Kobayashi, S.; Toyooka, N.; Zhou, D.; Tsuneki, H.; Wada, T.; Sasaoka, T.; Sakai, H.; Nemoto, H.; Garraffo, H. M.; Spande, T. F.; Daly, J. W. Flexible synthesis of poison-frog alkaloids of the 5,8-disubstituted indolizidine-class. II: Synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and an epimer of 193E and pharmacological effects at neuronal nicotinic acetylcholine receptors. Beilstein journal of organic chemistry 2007, 3, 30. doi:10.1186/1860-5397-3-30
Other Beilstein-Institut Open Science Activities