Radical carbonylations using a continuous microflow system

Takahide Fukuyama, Md. Taifur Rahman, Naoya Kamata and Ilhyong Ryu
Beilstein J. Org. Chem. 2009, 5, No. 34. https://doi.org/10.3762/bjoc.5.34

Cite the Following Article

Radical carbonylations using a continuous microflow system
Takahide Fukuyama, Md. Taifur Rahman, Naoya Kamata and Ilhyong Ryu
Beilstein J. Org. Chem. 2009, 5, No. 34. https://doi.org/10.3762/bjoc.5.34

How to Cite

Fukuyama, T.; Rahman, M. T.; Kamata, N.; Ryu, I. Beilstein J. Org. Chem. 2009, 5, No. 34. doi:10.3762/bjoc.5.34

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sheng, L.; Chang, Y.; Wang, J.; Deng, J.; Luo, G. Remarkable improvement of gas–liquid mass transfer by modifying the structure of conventional T‐junction microchannel. AIChE Journal 2023, 69. doi:10.1002/aic.18089
  • Forni, J. A.; Gandhi, V. H.; Polyzos, A. Carbonylative Hydroacylation of Styrenes with Alkyl Halides by Multiphoton Tandem Photoredox Catalysis in Flow. ACS Catalysis 2022, 12, 10018–10027. doi:10.1021/acscatal.2c02531
  • Lambruschini, C.; Moni, L.; Basso, A. doi:10.1002/9783527832439.ch6
  • Yamamoto, T.; Tonomura, O.; Nagaki, A. Continuous Production Using a T-Shaped Micro/Milli-Reactor for RUCY-Catalyzed Asymmetric Hydrogenation of Acetophenone. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020, 53, 73–77. doi:10.1252/jcej.19we083
  • Santana, H. S.; Silva, J. L.; Aghel, B.; Ortega-Casanova, J. Review on microfluidic device applications for fluids separation and water treatment processes. SN Applied Sciences 2020, 2, 1–19. doi:10.1007/s42452-020-2176-7
  • von Keutz, T.; Cantillo, D.; Kappe, C. O. Enhanced mixing of biphasic liquid-liquid systems for the synthesis of gem-dihalocyclopropanes using packed bed reactors. Journal of Flow Chemistry 2019, 9, 27–34. doi:10.1007/s41981-018-0026-1
  • Hone, C. A.; Lopatka, P.; Munday, R. H.; O’Kearney-McMullan, A.; Kappe, C. O. Continuous‐flow Synthesis of Aryl Aldehydes by Pd‐catalyzed Formylation of Aryl Bromides Using Carbon Monoxide and Hydrogen. ChemSusChem 2018, 12, 326–337. doi:10.1002/cssc.201802261
  • Jin, Y.; Yang, N.; Tong, Q.; Jin, Z.; Xu, X. Rotary magnetic field combined with pipe fluid technique for efficient extraction of pumpkin polysaccharides. Innovative Food Science & Emerging Technologies 2016, 35, 103–110. doi:10.1016/j.ifset.2016.04.012
  • Singh, R.; Lee, H.-J.; Singh, A.; Kim, D.-P. Recent advances for serial processes of hazardous chemicals in fully integrated microfluidic systems. Korean Journal of Chemical Engineering 2016, 33, 2253–2267. doi:10.1007/s11814-016-0114-6
  • Johnson, M. D.; May, S. A.; Calvin, J. R.; Lambertus, G. R.; Kokitkar, P. B.; Landis, C. R.; Jones, B.; Abrams, M. L.; Stout, J. R. Continuous Liquid Vapor Reactions Part 1: Design and Characterization of a Reactor for Asymmetric Hydroformylation. Organic Process Research & Development 2016, 20, 888–900. doi:10.1021/acs.oprd.5b00407
  • Laurenti, E.; Vianna, A. S. Enzymatic microreactors in biocatalysis: history, features, and future perspectives. Biocatalysis 2016, 1, 148–165. doi:10.1515/boca-2015-0008
  • Mallia, C. J.; Baxendale, I. R. The Use of Gases in Flow Synthesis. Organic Process Research & Development 2015, 20, 327–360. doi:10.1021/acs.oprd.5b00222
  • Gutmann, B.; Cantillo, D.; Kappe, C. O. Continuous‐Flow Technology—A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angewandte Chemie (International ed. in English) 2015, 54, 6688–6728. doi:10.1002/anie.201409318
  • Gutmann, B.; Cantillo, D.; Kappe, C. O. Kontinuierliche Durchflussverfahren: ein Werkzeug für die sichere Synthese von pharmazeutischen Wirkstoffen. Angewandte Chemie 2015, 127, 6788–6832. doi:10.1002/ange.201409318
  • Nagaki, A. Synthetic Chemistry in Flow Microreactors. Journal of Synthetic Organic Chemistry, Japan 2015, 73, 423–434. doi:10.5059/yukigoseikyokaishi.73.423
  • Fukuyama, T.; Totoki, T.; Ryu, I. Flow update for the carbonylation of 1-silyl-substituted organolithiums under CO pressure. Organic letters 2014, 16, 5632–5635. doi:10.1021/ol5026958
  • Akinaga, H.; Masaoka, N.; Takagi, K.; Ryu, I.; Fukuyama, T. Flow Carbonylation Using Near-stoichiometric Carbon Monoxide. Application to Heck Carbonylation. Chemistry Letters 2014, 43, 1456–1458. doi:10.1246/cl.140415
  • Nagaki, A.; Takahashi, Y.; Yoshida, J.-i. Extremely Fast Gas/Liquid Reactions in Flow Microreactors: Carboxylation of Short‐Lived Organolithiums. Chemistry (Weinheim an der Bergstrasse, Germany) 2014, 20, 7931–7934. doi:10.1002/chem.201402520
  • Fukuyama, T.; Totoki, T.; Ryu, I. Carbonylation in microflow: close encounters of CO and reactive species. Green Chemistry 2014, 16, 2042–2050. doi:10.1039/c3gc41789a
  • Kawamoto, T.; Fukuyama, T.; Ryu, I. Innovative carbonylation methods. Journal of Synthetic Organic Chemistry, Japan 2014, 72, 493–505. doi:10.5059/yukigoseikyokaishi.72.493
Other Beilstein-Institut Open Science Activities