Coaxial electrospinning of liquid crystal-containing poly(vinylpyrrolidone) microfibres

Eva Enz, Ute Baumeister and Jan Lagerwall
Beilstein J. Org. Chem. 2009, 5, No. 58. https://doi.org/10.3762/bjoc.5.58

Cite the Following Article

Coaxial electrospinning of liquid crystal-containing poly(vinylpyrrolidone) microfibres
Eva Enz, Ute Baumeister and Jan Lagerwall
Beilstein J. Org. Chem. 2009, 5, No. 58. https://doi.org/10.3762/bjoc.5.58

How to Cite

Enz, E.; Baumeister, U.; Lagerwall, J. Beilstein J. Org. Chem. 2009, 5, No. 58. doi:10.3762/bjoc.5.58

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Lagerwall, J. P. F. The good, the bad and the ugly faces of cyanobiphenyl mesogens in selected tracks of fundamental and applied liquid crystal research. Liquid Crystals 2023, 1–15. doi:10.1080/02678292.2023.2292621
  • Mamuk, A. E. A comparative study on electrospun fibers of cyanobiphenyl liquid crystal homologues. Fullerenes, Nanotubes and Carbon Nanostructures 2023, 31, 752–765. doi:10.1080/1536383x.2023.2206653
  • Williams, M. W.; Wimberly, J. A.; Stwodah, R. M.; Nguyen, J.; D'Angelo, P. A.; Tang, C. Temperature-Responsive Structurally Colored Fibers via Blend Electrospinning. ACS Applied Polymer Materials 2023, 5, 3065–3078. doi:10.1021/acsapm.3c00222
  • Thum, M. D.; Kołacz, J.; Ratchford, D. C.; Camarella, G.; Maza, W.; Lundin, J. G. Dynamic Interference Colors in Electrospun Microfibrous Mats. Advanced Optical Materials 2022, 10. doi:10.1002/adom.202200192
  • Schelski, K.; Reyes, C. G.; Pschyklenk, L.; Kaul, P.-M.; Lagerwall, J. P. F. Quantitative volatile organic compound sensing with liquid crystal core fibers. Cell reports. Physical science 2021, 2, 100661. doi:10.1016/j.xcrp.2021.100661
  • Vats, S.; Honaker, L. W.; Frey, M. W.; Basoli, F.; Lagerwall, J. P. F. Electrospinning Ethanol–Water Solutions of Poly(Acrylic Acid): Nonlinear Viscosity Variations and Dynamic Taylor Cone Behavior. Macromolecular Materials and Engineering 2021, 307, 2100640. doi:10.1002/mame.202100640
  • Zhao, J.; Zhang, L.; Hu, J. Varied Alignment Methods and Versatile Actuations for Liquid Crystal Elastomers: A Review. Advanced Intelligent Systems 2021, 4, 2100065. doi:10.1002/aisy.202100065
  • Vats, S.; Anyfantakis, M.; Honaker, L. W.; Basoli, F.; Lagerwall, J. P. F. Stable Electrospinning of Core-Functionalized Coaxial Fibers Enabled by the Minimum-Energy Interface Given by Partial Core-Sheath Miscibility. Langmuir : the ACS journal of surfaces and colloids 2021, 37, 13265–13277. doi:10.1021/acs.langmuir.1c01824
  • Thum, M. D.; Ratchford, D.; Casalini, R.; Kolacz, J.; Lundin, J. G. Photochemical phase and alignment control of a nematic liquid crystal in core-sheath nanofibers. Journal of Materials Chemistry C 2021, 9, 12859–12867. doi:10.1039/d1tc02392f
  • Mamuk, A. E.; Kocak, C.; Dönmez, Ç. E. D. Production and characterization of liquid crystal/polyacrylonitrile nano-fibers by electrospinning method. Colloid and Polymer Science 2021, 299, 1209–1221. doi:10.1007/s00396-021-04842-5
  • Rathore, P.; Schiffman, J. D. Beyond the Single-Nozzle: Coaxial Electrospinning Enables Innovative Nanofiber Chemistries, Geometries, and Applications. ACS applied materials & interfaces 2020, 13, 48–66. doi:10.1021/acsami.0c17706
  • Shankar, A.; Pal, S.; Srivastava, R. K.; Nandan, B. Phase transitions of liquid crystal confined in electrospun polymer nanofibres. Bulletin of Materials Science 2020, 43, 1–11. doi:10.1007/s12034-020-2083-y
  • Singh, U.; Mohan, S. D.; Davis, F. Selective Bragg reflection of visible light from coaxial electrospun fiber mats. Journal of Applied Polymer Science 2020, 138, 49647. doi:10.1002/app.49647
  • Dicker, K. T.; Ratchford, D.; Casalini, R.; Thum, M. D.; Wynne, J. H.; Lundin, J. G. Surfactant Modulated Phase Transitions of Liquid Crystals Confined in Electrospun Coaxial Fibers. Langmuir : the ACS journal of surfaces and colloids 2020, 36, 7916–7924. doi:10.1021/acs.langmuir.0c01066
  • Pschyklenk, L.; Wagner, T.; Lorenz, A.; Kaul, P. Optical Gas Sensing with Encapsulated Chiral-Nematic Liquid Crystals. ACS Applied Polymer Materials 2020, 2, 1925–1932. doi:10.1021/acsapm.0c00142
  • Bertocchi, M. J.; Vang, P.; Balow, R. B.; Wynne, J. H.; Lundin, J. G. Enhanced Mechanical Damping in Electrospun Polymer Fibers with Liquid Cores: Applications to Sound Damping. ACS Applied Polymer Materials 2019, 1, 2068–2076. doi:10.1021/acsapm.9b00352
  • Bertocchi, M. J.; Simbana, R. A.; Wynne, J. H.; Lundin, J. G. Electrospinning of Tough and Elastic Liquid Crystalline Polymer–Polyurethane Composite Fibers: Mechanical Properties and Fiber Alignment. Macromolecular Materials and Engineering 2019, 304, 1900186. doi:10.1002/mame.201900186
  • Bertocchi, M. J.; Ratchford, D.; Casalini, R.; Wynne, J. H.; Lundin, J. G. Electrospun Polymer Fibers Containing a Liquid Crystal Core: Insights into Semiflexible Confinement. The Journal of Physical Chemistry C 2018, 122, 16964–16973. doi:10.1021/acs.jpcc.8b04668
  • Canejo, J. P.; Monge, N.; Echeverria, C.; Fernandes, S. N.; Godinho, M. H. Cellulosic liquid crystals for films and fibers. Liquid Crystals Reviews 2017, 5, 86–110. doi:10.1080/21680396.2017.1394923
  • Urbanski, M.; Reyes, C. G.; Noh, J.; Sharma, A.; Geng, Y.; Jampani, V. S. R.; Lagerwall, J. P. F. Liquid crystals in micron-scale droplets, shells and fibers. Journal of physics. Condensed matter : an Institute of Physics journal 2017, 29, 133003. doi:10.1088/1361-648x/aa5706

Patents

  • LUNDIN JEFFREY G; THUM MATTHEW D; CASALINI RICCARDO; RATCHFORD DANIEL. PHOTOCHROMIC LIQUID CRYSTAL ELECTROSPUN COAXIAL POLYMER FIBERS. US 20220081804 A1, March 17, 2022.
  • WANG JUNREN; J L WEST; ZHU YUNJIA. Liquid crystal composite fiber and preparation method thereof. CN 109957853 A, July 2, 2019.
Other Beilstein-Institut Open Science Activities