Differences between β-Ala and Gly-Gly in the design of amino acids-based hydrogels

Andreea Pasc, Firmin Obounou Akong, Sedat Cosgun and Christine Gérardin
Beilstein J. Org. Chem. 2010, 6, 973–977. https://doi.org/10.3762/bjoc.6.109

Cite the Following Article

Differences between β-Ala and Gly-Gly in the design of amino acids-based hydrogels
Andreea Pasc, Firmin Obounou Akong, Sedat Cosgun and Christine Gérardin
Beilstein J. Org. Chem. 2010, 6, 973–977. https://doi.org/10.3762/bjoc.6.109

How to Cite

Pasc, A.; Obounou Akong, F.; Cosgun, S.; Gérardin, C. Beilstein J. Org. Chem. 2010, 6, 973–977. doi:10.3762/bjoc.6.109

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tiwari, O. S.; Rencus-Lazar, S.; Gazit, E. Peptide- and Metabolite-Based Hydrogels: Minimalistic Approach for the Identification and Characterization of Gelating Building Blocks. International journal of molecular sciences 2023, 24, 10330. doi:10.3390/ijms241210330
  • Zhou, J.; Cha, R.; Wu, Z.; Zhang, C.; He, Y.; Zhang, H.; Liu, K.; Fareed, M. S.; Wang, Z.; Yang, C.; Zhang, Y.; Yan, W.; Wang, K. An injectable, natural peptide hydrogel with potent antimicrobial activity and excellent wound healing-promoting effects. Nano Today 2023, 49, 101801. doi:10.1016/j.nantod.2023.101801
  • Singh, V.; Prasad, Y. S.; Rachamalla, A. K.; Rebaka, V. P.; Banoo, T.; Maheswari, C. U.; Sridharan, V.; Lalitha, K.; Nagarajan, S. Hybrid hydrogels derived from renewable resources as a smart stimuli responsive soft material for drug delivery applications. RSC advances 2022, 12, 2009–2018. doi:10.1039/d1ra08447j
  • Murali, D. M.; Shanmugam, G. The aromaticity of the phenyl ring imparts thermal stability to a supramolecular hydrogel obtained from low molecular mass compound. New Journal of Chemistry 2019, 43, 12396–12409. doi:10.1039/c9nj01781j
  • Koc, M. H.; Ciftci, G. C.; Baday, S.; Castelletto, V.; Hamley, I. W.; Guler, M. O. Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures. Langmuir : the ACS journal of surfaces and colloids 2017, 33, 7947–7956. doi:10.1021/acs.langmuir.7b01266
  • Mangelschots, J.; Bibian, M.; Gardiner, J.; Waddington, L. J.; Van Wanseele, Y.; Van Eeckhaut, A.; Acevedo, M. M. D.; Van Mele, B.; Madder, A.; Hoogenboom, R.; Ballet, S. Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability. Biomacromolecules 2016, 17, 437–445. doi:10.1021/acs.biomac.5b01319
  • Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical reviews 2015, 115, 13165–13307. doi:10.1021/acs.chemrev.5b00299
  • Singh, V.; Snigdha, K.; Singh, C.; Sinha, N.; Thakur, A. K. Understanding the self-assembly of Fmoc–phenylalanine to hydrogel formation. Soft matter 2015, 11, 5353–5364. doi:10.1039/c5sm00843c
  • Obounou-Akong, F.; Gérardin, P.; Thévenon, M.-F.; Gérardin-Charbonnier, C. Hydrogel-based boron salt formulations for wood preservation. Wood Science and Technology 2015, 49, 443–456. doi:10.1007/s00226-015-0701-4
  • Li, J.; Kuang, Y.; Shi, J.; Gao, Y.; Zhou, J.; Xu, B. The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein journal of organic chemistry 2013, 9, 908–917. doi:10.3762/bjoc.9.104
  • Akong, F. O.; Mutlu, M.; Pasc, A.; Coşgun, S.; Gérardin, P.; Gérardin-Charbonnier, C. Hydrogels obtained from an original catanionic system for efficient formulation of boron wood-preservatives. International Biodeterioration & Biodegradation 2013, 77, 123–126. doi:10.1016/j.ibiod.2012.06.029
  • Meng, S.; Li, W.; Yin, X.; Xie, J. A comprehensive theoretical study of the hydrogen bonding interactions and microscopic solvation structures of a pyridyl-urea-based hydrogelator in aqueous solution. Computational and Theoretical Chemistry 2013, 1006, 76–84. doi:10.1016/j.comptc.2012.11.011
  • Meng, S.; Tang, Y.; Yin, Y.; Yin, X.; Xie, J. A theoretical study of molecular conformations and gelation ability of N,N′-dipyridyl urea compounds in ethanol solution: DFT calculations and MD simulations. RSC Advances 2013, 3, 18115–18127. doi:10.1039/c3ra43056a
  • Akong, F. O.; Pasc, A.; Emo, M.; Gérardin-Charbonnier, C. A supramolecular hydrogel based on an original pseudopeptidic catanionic surfactant. New J. Chem. 2013, 37, 559–562. doi:10.1039/c2nj40960g
  • Lin, B. F.; Megley, K.; Viswanathan, N.; Krogstad, D. V.; Drews, L. B.; Kade, M. J.; Qian, Y.; Tirrell, M. pH-responsive branched peptide amphiphile hydrogel designed for applications in regenerative medicine with potential as injectable tissue scaffolds. Journal of Materials Chemistry 2012, 22, 19447–19454. doi:10.1039/c2jm31745a
  • Rameshbabu, K.; Zuo, L.; Kim, C.; Urbas, A.; Li, Q. Self-organized photochromic dithienylcyclopentene organogels. Journal of Materials Chemistry 2011, 21, 15673–15677. doi:10.1039/c1jm13342j
Other Beilstein-Institut Open Science Activities