A short and efficient synthesis of valsartan via a Negishi reaction

Samir Ghosh, A. Sanjeev Kumar and G. N. Mehta
Beilstein J. Org. Chem. 2010, 6, No. 27. https://doi.org/10.3762/bjoc.6.27

Cite the Following Article

A short and efficient synthesis of valsartan via a Negishi reaction
Samir Ghosh, A. Sanjeev Kumar and G. N. Mehta
Beilstein J. Org. Chem. 2010, 6, No. 27. https://doi.org/10.3762/bjoc.6.27

How to Cite

Ghosh, S.; Kumar, A. S.; Mehta, G. N. Beilstein J. Org. Chem. 2010, 6, No. 27. doi:10.3762/bjoc.6.27

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ali, H. A.; Ismail, M. A.; Fouda, A. E.-A. S.; Ghaith, E. A. A fruitful century for the scalable synthesis and reactions of biphenyl derivatives: applications and biological aspects. RSC advances 2023, 13, 18262–18305. doi:10.1039/d3ra03531j
  • Wang, Y.-F.; Ren, X.-Y.; Zhang, W.; Rao, G.-W. Research Progress in Pharmacological Mechanisms, Structure-Activity Relationship and Synthesis of Sartans. Current medicinal chemistry 2023, 30, 2247–2266. doi:10.2174/0929867329666220829101436
  • Boyle, M.; Livingstone, K.; Henry, M. C.; Elwood, J. M. L.; Lopez-Fernandez, J. D.; Jamieson, C. Amide Bond Formation via the Rearrangement of Nitrile Imines Derived from N-2-Nitrophenyl Hydrazonyl Bromides. Organic letters 2021, 24, 334–338. doi:10.1021/acs.orglett.1c03993
  • Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green Chemistry in the Synthesis of Pharmaceuticals. Chemical reviews 2021, 122, 3637–3710. doi:10.1021/acs.chemrev.1c00631
  • Ray, A.; Atal, S.; Sadasivam, B. Understanding the molecular-pharmaceutical basis of sartan recalls focusing on valsartan. Global cardiology science & practice 2020, 2020, e202025. doi:10.21542/gcsp.2020.25
  • Maier, M. C.; Valotta, A.; Hiebler, K.; Soritz, S.; Gavric, K.; Grabner, B.; Gruber-Woelfler, H. 3D Printed Reactors for Synthesis of Active Pharmaceutical Ingredients in Continuous Flow. Organic Process Research & Development 2020, 24, 2197–2207. doi:10.1021/acs.oprd.0c00228
  • Parr, M. K.; Joseph, J. F. NDMA impurity in valsartan and other pharmaceutical products: Analytical methods for the determination of N-nitrosamines. Journal of pharmaceutical and biomedical analysis 2018, 164, 536–549. doi:10.1016/j.jpba.2018.11.010
  • Maralla, Y.; Sonawane, S. H.; Kashinath, D.; Pimplapure, M. S.; Paplal, B. Process Intensification of Tetrazole reaction through tritylation of 5-[4′-(Methyl) Biphenyl-2-Yl] using microreactors. Chemical Engineering and Processing: Process Intensification 2017, 112, 9–17. doi:10.1016/j.cep.2016.12.003
  • Moselage, M.; Li, J.; Ackermann, L. Cobalt-Catalyzed C―H Activation. ACS Catalysis 2015, 6, 230–263.
  • Moselage, M.; Li, J.; Ackermann, L. Cobalt-Catalyzed C–H Activation. ACS Catalysis 2015, 6, 498–525. doi:10.1021/acscatal.5b02344
  • Li, J.; Ackermann, L. Cobalt‐Catalyzed C ? H Arylations with Weakly‐Coordinating Amides and Tetrazoles: Expedient Route to Angiotensin‐II‐Receptor Blockers. Chemistry (Weinheim an der Bergstrasse, Germany) 2015, 21, 5718–5722. doi:10.1002/chem.201500552
  • Gupta, P.; Mahajan, A. Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. RSC Advances 2015, 5, 26686–26705. doi:10.1039/c5ra00358j
  • Santra, S.; Hota, P. K.; Bhattacharyya, R.; Bera, P.; Ghosh, P.; Mandal, S. K. Palladium Nanoparticles on Graphite Oxide: A Recyclable Catalyst for the Synthesis of Biaryl Cores. ACS Catalysis 2013, 3, 2776–2789. doi:10.1021/cs400468h
  • Reddy, G. A.; Reddy, K. H.; Kumar, M. N.; Sharma, H. Simple and Sensitive Methods for the Determination of 2-(4′-Chloromethyl phenyl) Benzonitrile and 2-(4′-Bromomethyl phenyl) Benzonitrile Contents in Valsartan Drug Substance by Gas Chromatography. ISRN Analytical Chemistry 2013, 2013, 1–5. doi:10.1155/2013/542516
  • Diers, E.; Kumar, N. Y. P.; Mejuch, T.; Marek, I.; Ackermann, L. Carboxylate-assisted ruthenium(II)-catalyzed C–H arylations of 5-aryl tetrazoles: step-economical access to Valsartan. Tetrahedron 2013, 69, 4445–4453. doi:10.1016/j.tet.2013.01.006
  • Malik, M. A.; Wani, M. Y.; Al-Thabaiti, S. A.; Shiekh, R. A. Tetrazoles as carboxylic acid isosteres: chemistry and biology. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2013, 78, 15–37. doi:10.1007/s10847-013-0334-x
  • Colacino, E.; Martinez, J.; Lamaty, F. doi:10.1002/9781118342886.ch2

Patents

  • MEHTA DILIP S; SHASTRI MAYANK. Process for the synthesis of highly pure cationic surfactant products. US 10287242 B2, May 14, 2019.
  • SEKI MASAHIKO. Method for producing biaryl compound. US 9624181 B2, April 18, 2017.
  • SEKI MASAHIKO. METHOD FOR PRODUCING BIARYL COMPOUND. EP 2891650 A4, Jan 13, 2016.
  • MEHTA DILIP S; SHASTRI MAYANK. PROCESS FOR THE SYNTHESIS OF HIGHLY PURE CATIONIC SURFACTANT PRODUCTS. EP 2797874 A4, Dec 9, 2015.
  • BURGBACHER JENS; HAHN BJOERN THOMAS; RAMPF FLORIAN ANDREAS; SCHNEEBERGER RICARDO. HIGHLY CRYSTALLINE VALSARTAN. WO 2012016969 A1, Feb 9, 2012.
Other Beilstein-Institut Open Science Activities