The C–F bond as a conformational tool in organic and biological chemistry

Luke Hunter
Beilstein J. Org. Chem. 2010, 6, No. 38. https://doi.org/10.3762/bjoc.6.38

Cite the Following Article

The C–F bond as a conformational tool in organic and biological chemistry
Luke Hunter
Beilstein J. Org. Chem. 2010, 6, No. 38. https://doi.org/10.3762/bjoc.6.38

How to Cite

Hunter, L. Beilstein J. Org. Chem. 2010, 6, No. 38. doi:10.3762/bjoc.6.38

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Luo, H.; Cai, X.; Li, Z.; Hu, J.; Wu, T. Palladium-Catalyzed Addition of Allyl Fluorides to Gem-Difluoroolefins: Reorganization of C–F Bonds. ACS Catalysis 2025, 12148–12156. doi:10.1021/acscatal.5c01996
  • Khan, M. F. Recent Progress and Challenges in Microbial Defluorination and Degradation for Sustainable Remediation of Fluorinated Xenobiotics. Processes 2025, 13, 2017. doi:10.3390/pr13072017
  • Lazare, J.; Tebes-Stevens, C.; Weber, E. J.; Shields, L. K. pKa Data-Driven Insights into Multiple Linear Regression Hydrolysis QSARs: Applicability to Perfluorinated Alkyl Esters. Environmental science & technology 2025, 59, 11745–11755. doi:10.1021/acs.est.4c11596
  • Lai, E. Y.; Ackermann, L.; Johansson, M. J. A unified approach to meta-selective methylation, mono-, di- and trifluoromethylation of arenes. Chemical science 2025, 16, 8478–8486. doi:10.1039/d5sc01367d
  • Lyu, Y.; Pünner, F.; Akakabe, M.; Sohtome, Y.; Sodeoka, M. Factors Controlling Diastereoselectivity and Reactivity in the Catalytic Aerobic Carbooxygenation of (E)-2-Fluoro-3-aryl-allyl Nitroacetates. Chemistry, an Asian journal 2025, e202500336. doi:10.1002/asia.202500336
  • Goel, N.; Kumari, P.; Gunjan; Phillips, A.; Bhagat, S. Recent Advances in Fluorination Reactions via De-Carboxylative and De-Oxygenative Strategies: A Perspective. Chemical record (New York, N.Y.) 2025, e202500068. doi:10.1002/tcr.202500068
  • Krafft, M. P. From fluorine's position in the periodic table to PFAS environmental issues. Comptes Rendus. Chimie 2025, 28, 423–438. doi:10.5802/crchim.391
  • Luo, Z.; Qiu, H.; Peng, X.; Tan, Q.; Chen, B.; Gu, Q.; Liu, H.; Zhou, H. Development of potent inhibitors targeting bacterial prolyl-tRNA synthetase through fluorine scanning-directed activity tuning. European journal of medicinal chemistry 2025, 291, 117647. doi:10.1016/j.ejmech.2025.117647
  • Mirabi, B.; Lautens, M.; Baik, M.-H. The rhodium riddle: computational insights into competitive β-hydride vs. β-fluoride elimination. Catalysis Science & Technology 2025, 15, 2482–2492. doi:10.1039/d4cy01495b
  • Hooker, L. V.; Bandar, J. S. Capturing Unstable Carbanionic Intermediates via Halogen Transfer: Base‐Promoted Oxidative Coupling Reactions of α,α‐Difluoromethylarenes. Angewandte Chemie 2025, 137. doi:10.1002/ange.202502894
  • Hooker, L. V.; Bandar, J. S. Capturing Unstable Carbanionic Intermediates via Halogen Transfer: Base-Promoted Oxidative Coupling Reactions of α,α-Difluoromethylarenes. Angewandte Chemie (International ed. in English) 2025, 64, e202502894. doi:10.1002/anie.202502894
  • Lobitz, A.; Steuber, A.; Jia, S.; Guo, L. Harnessing Fluorine Chemistry: Strategies for Per- and Polyfluoroalkyl Substances Removal and Enrichment. ChemPlusChem 2025, e2400784. doi:10.1002/cplu.202400784
  • Ryan, P.; Iftikhar, R.; Hunter, L. Origami with small molecules: exploiting the C-F bond as a conformational tool. Beilstein journal of organic chemistry 2025, 21, 680–716. doi:10.3762/bjoc.21.54
  • Do, T.; Kim, G. H.; Rios, R.; Yang, J. W. Recent advances in organocatalytic enantioselective syntheses of β-fluoroamine compounds. Molecular Catalysis 2025, 576, 114944. doi:10.1016/j.mcat.2025.114944
  • Sıcak, Y.; Başaran, E.; Türkmenoğlu, B.; Öztürk, M. Synthesis of newly designed hydrazones, in vitro and in silico studies, and structure-activity relationship. Journal of Molecular Structure 2025, 1322, 140417. doi:10.1016/j.molstruc.2024.140417
  • Rozatian, N.; Roesner, S. Fluorine-containing macrocyclic peptides and peptidomimetics. Organic Chemistry Frontiers 2025. doi:10.1039/d5qo00219b
  • Linclau, B. doi:10.1002/9780470682531.pat1033
  • Cogswell, T. J.; Lewis, R. J.; Sköld, C.; Nordqvist, A.; Ahlqvist, M.; Knerr, L. The effect of gem-difluorination on the conformation and properties of a model macrocyclic system. Chemical science 2024, 15, 19770–19776. doi:10.1039/d4sc05424e
  • Egbaria, N.; Agbaria, M.; Borin, V. A.; Hoffman, R. E.; Bogoslavsky, B.; Schapiro, I.; Nairoukh, Z. The Conformational Behaviour of Fluorinated Tetrahydrothiopyran. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202402260. doi:10.1002/chem.202402260
  • Chovatia, P.; Sanzone, A.; Hofman, G.-J.; Dooley, R.; Pezzati, B.; Trist, I. M. L.; Ouvry, G. Harnessing conformational drivers in drug design. Progress in medicinal chemistry 2024, 63, 1–60. doi:10.1016/bs.pmch.2024.07.001
Other Beilstein-Institut Open Science Activities