Protonation and deprotonation induced organo/hydrogelation: Bile acid derived gelators containing a basic side chain

Uday Maitra and Arkajyoti Chakrabarty
Beilstein J. Org. Chem. 2011, 7, 304–309. https://doi.org/10.3762/bjoc.7.40

Cite the Following Article

Protonation and deprotonation induced organo/hydrogelation: Bile acid derived gelators containing a basic side chain
Uday Maitra and Arkajyoti Chakrabarty
Beilstein J. Org. Chem. 2011, 7, 304–309. https://doi.org/10.3762/bjoc.7.40

How to Cite

Maitra, U.; Chakrabarty, A. Beilstein J. Org. Chem. 2011, 7, 304–309. doi:10.3762/bjoc.7.40

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bariya, D.; Anand, V.; Mishra, S. Recent advances in the bile acid based conjugates/derivatives towards their gelation applications. Steroids 2020, 165, 108769. doi:10.1016/j.steroids.2020.108769
  • Wagalgave, S. M.; Padghan, S. D.; Al Kobaisi, M.; La, D. D.; Bhamidipati, K.; Puvvada, N.; Bhosale, R. S.; Bhosale, S. V.; Bhosale, S. V. Selectivity and bio-compatibility of self-assembled chiral flower-like and helical nanostructures. New Journal of Chemistry 2020, 44, 18092–18101. doi:10.1039/d0nj01235a
  • Agarwal, D. S.; Singh, R. P.; Jha, P.; Sakhuja, R. Fabrication of deoxycholic acid tethered α-cyanostilbenes as smart low molecular weight gelators and AIEE probes for bio-imaging. Steroids 2020, 160, 108659. doi:10.1016/j.steroids.2020.108659
  • Shin, G.; Khazi, M. I.; Kim, J.-M. Protonation-Induced Self-Assembly of Flexible Macrocyclic Diacetylene for Constructing Stimuli-Responsive Polydiacetylene. Macromolecules 2019, 53, 149–157. doi:10.1021/acs.macromol.9b02133
  • Chakrabarty, A.; Maity, M.; Raffy, G.; Marre, S.; Aymonier, C.; Maitra, U.; Del Guerzo, A. Wire‐Like Tip‐To‐Tip Linked Assemblies of CdSe‐CdS Quantum Rods Promoted on Supramolecular Nanofibers of Hybrid Organo‐ and Hydrogels. ChemNanoMat 2019, 6, 79–88. doi:10.1002/cnma.201900428
  • Meijide, F.; Vázquez-Tato, M.; Seijas, J. A.; de Frutos, S.; Novo, J. V. T.; Soto, V. H.; Tato, J. V. Crystal Structure of a Cationic Bile Salt Derivative ([3β,5β,7α,12α]-3-(2-naphthyloylamino)-7,12-dihydroxycholan-24-triethylammonium iodide). Crystals 2019, 9, 135. doi:10.3390/cryst9030135
  • Singh, W. P.; Singh, R. S. A new class of organogelators based on triphenylmethyl derivatives of primary alcohols: hydrophobic interactions alone can mediate gelation. Beilstein journal of organic chemistry 2017, 13, 138–149. doi:10.3762/bjoc.13.17
  • Ordon, M.; Gorshkova, Y. E.; Ossowska-Chruściel, M. Lithocholic acid derivative in the presence of dimethyl sulfoxide: Morphology and phase transitions. Thermochimica Acta 2016, 643, 1–12. doi:10.1016/j.tca.2016.09.013
  • Zhang, M.; Strandman, S.; Waldron, K. C.; Zhu, X. X. Supramolecular hydrogelation with bile acid derivatives: structures, properties and applications. Journal of materials chemistry. B 2016, 4, 7506–7520. doi:10.1039/c6tb02270g
  • Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical reviews 2015, 115, 13165–13307. doi:10.1021/acs.chemrev.5b00299
  • Mayorquín-Torres, M. C.; Flores-Alamo, M.; Iglesias-Arteaga, M. A. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains. Steroids 2015, 101, 21–27. doi:10.1016/j.steroids.2015.05.007
  • Maity, M.; Sajisha, V. S.; Maitra, U. Hydrogelation of bile acid-peptide conjugates and in situ synthesis of silver and gold nanoparticles in the hydrogel matrix. RSC Advances 2015, 5, 90712–90719. doi:10.1039/c5ra17917c
  • Pandurangan, K.; Kitchen, J. A.; Blasco, S.; Paradisi, F.; Gunnlaugsson, T. Supramolecular pyridyl urea gels as soft matter with antibacterial properties against MRSA and/or E. coli. Chemical communications (Cambridge, England) 2014, 50, 10819–10822. doi:10.1039/c4cc04028g
  • Trillo, J. V.; Meijide, F.; Jover, A.; Soto, V. H.; de Frutos, S.; di Gregorio, M. C.; Galantini, L.; Tato, J. V. Self-aggregation mechanism of a naphthylamide cationic derivative of cholic acid. From fibers to tubules. RSC Advances 2014, 4, 5598–5606. doi:10.1039/c3ra47160h
  • Edelsztein, V. C.; Mac Cormack, A. S.; Ciarlantini, M.; Di Chenna, P. H. Self-assembly of 2,3-dihydroxycholestane steroids into supramolecular organogels as a soft template for the in-situ generation of silicate nanomaterials. Beilstein journal of organic chemistry 2013, 9, 1826–1836. doi:10.3762/bjoc.9.213
  • Zhang, Y.-M.; You, X.-M.; Yao, H.; Guo, Y.; Zhang, P.; Shi, B.; Liu, J.; Lin, Q.; Wei, T.-B. A silver-induced metal-organic gel based on biscarboxyl-functionalised benzimidazole derivative: stimuli responsive and dye sorption. Supramolecular Chemistry 2013, 26, 39–47. doi:10.1080/10610278.2013.822968
  • Chakrabarty, A.; Maitra, U. Organogels from Dimeric Bile Acid Esters: In Situ Formation of Gold Nanoparticles. The journal of physical chemistry. B 2013, 117, 8039–8046. doi:10.1021/jp4029497
  • Bunzen, H.; Kolehmainen, E. In situ formation of steroidal supramolecular gels designed for drug release. Molecules (Basel, Switzerland) 2013, 18, 3745–3759. doi:10.3390/molecules18043745
  • Chen, L.; McDonald, T. O.; Adams, D. J. Salt-induced hydrogels from functionalised-dipeptides. RSC Advances 2013, 3, 8714–8720. doi:10.1039/c3ra40938d
  • Behera, B.; Sagiri, S. S.; Pal, K.; Srivastava, A. K. Modulating the physical properties of sunflower oil and sorbitan monopalmitate‐based organogels. Journal of Applied Polymer Science 2012, 127, 4910–4917. doi:10.1002/app.37506
Other Beilstein-Institut Open Science Activities