The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria

Thorben Nawrath, Georgies F. Mgode, Bart Weetjens, Stefan H. E. Kaufmann and Stefan Schulz
Beilstein J. Org. Chem. 2012, 8, 290–299. https://doi.org/10.3762/bjoc.8.31

Supporting Information

Supporting Information File 1: Identification of compounds.
Format: PDF Size: 178.4 KB Download

Cite the Following Article

The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria
Thorben Nawrath, Georgies F. Mgode, Bart Weetjens, Stefan H. E. Kaufmann and Stefan Schulz
Beilstein J. Org. Chem. 2012, 8, 290–299. https://doi.org/10.3762/bjoc.8.31

How to Cite

Nawrath, T.; Mgode, G. F.; Weetjens, B.; Kaufmann, S. H. E.; Schulz, S. Beilstein J. Org. Chem. 2012, 8, 290–299. doi:10.3762/bjoc.8.31

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Żuchowska, K.; Filipiak, W. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art. Journal of Pharmaceutical Analysis 2023. doi:10.1016/j.jpha.2023.11.005
  • de Assis, M. W. V.; Brito, L. d. S.; de Lima, A. G.; de Souza, E. B.; Alexandrino, B.; Ramos, L. K. d. S.; Oliveira, M. N.; Niculau, E. d. S. Chemical profiling of healthy and infected watermelon (Citrullus lanatus) affected by bacterial fruit blotch using gas chromatography–mass spectrometry. Food Chemistry Advances 2023, 2, 100248. doi:10.1016/j.focha.2023.100248
  • Beyene, N.; Mgode, G.; Burny, R.; Fast, C. D.; Cox, C.; Fiebig, L. A Multidisciplinary Approach Towards Finding and Treating All Tuberculosis Patients. Integrated Science; Springer International Publishing, 2023; pp 207–227. doi:10.1007/978-3-031-15955-8_12
  • Luo, H.; Riu, M.; Ryu, C.-M.; Yu, J. M. Volatile organic compounds emitted by Burkholderia pyrrocinia CNUC9 trigger induced systemic salt tolerance in Arabidopsis thaliana. Frontiers in microbiology 2022, 13, 1050901. doi:10.3389/fmicb.2022.1050901
  • Ratiu, I. A.; Ligor, T.; Monedeiro, F.; Milanowski, M.; Rudnicka, J.; Buszewski, B. Volatile Organic Compounds Emitted by Biological Matrices. Handbook of Bioanalytics; Springer International Publishing, 2022; pp 277–293. doi:10.1007/978-3-030-95660-8_13
  • Kim, S.-O.; Son, S. Y.; Kim, M. J.; Lee, C. H.; Park, S.-A. Physiological Responses of Adults during Soil-mixing Activities Based on the Presence of Soil Microorganisms: A Metabolomics Approach. Journal of the American Society for Horticultural Science 2022, 147, 135–144. doi:10.21273/jashs05146-21
  • Ratiu, I. A.; Ligor, T.; Monedeiro, F.; Milanowski, M.; Rudnicka, J.; Buszewski, B. Volatile Organic Compounds Emitted by Biological Matrices. Handbook of Bioanalytics; Springer International Publishing, 2022; pp 1–17. doi:10.1007/978-3-030-63957-0_13-1
  • Vishinkin, R.; Busool, R.; Mansour, E.; Fish, F.; Esmail, A.; Kumar, P.; Gharaa, A.; Cancilla, J. C.; Torrecilla, J. S.; Skenders, G.; Leja, M.; Dheda, K.; Singh, S.; Haick, H. Profiles of Volatile Biomarkers Detect Tuberculosis from Skin. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2021, 8, 2100235. doi:10.1002/advs.202100235
  • Rodríguez-Hernández, P.; Rodríguez-Estévez, V.; Arce, L.; Gómez-Laguna, J. Application of Volatilome Analysis to the Diagnosis of Mycobacteria Infection in Livestock. Frontiers in veterinary science 2021, 8, 635155. doi:10.3389/fvets.2021.635155
  • Chhalodia, A. K.; Rinkel, J.; Konvalinkova, D.; Petersen, J.; Dickschat, J. S. Identification of volatiles from six marine Celeribacter strains. Beilstein journal of organic chemistry 2021, 17, 420–430. doi:10.3762/bjoc.17.38
  • Vaishnavi, J.; Reddy, S.; Narmadha, S.; Osborne, W. J. Detection and purification of microbial volatile organic compounds. Volatiles and Metabolites of Microbes; Elsevier, 2021; pp 51–64. doi:10.1016/b978-0-12-824523-1.00021-3
  • Cosetta, C. M.; Kfoury, N.; Robbat, A.; Wolfe, B. E. Fungal volatiles mediate cheese rind microbiome assembly. Environmental microbiology 2020, 22, 4745–4760. doi:10.1111/1462-2920.15223
  • Heenan-Daly, D.; Velivelli, S. L. S.; Prestwich, B. D. The Role of Rhizobacterial Volatile Organic Compounds in a Second Green Revolution—The Story so Far. Sustainable Development and Biodiversity; Springer International Publishing, 2019; pp 191–220. doi:10.1007/978-3-030-30926-8_8
  • Ratiu, I.-A.; Bocos-Bintintan, V.; Monedeiro, F.; Milanowski, M.; Ligor, T.; Buszewski, B. An Optimistic Vision of Future: Diagnosis of Bacterial Infections by Sensing Their Associated Volatile Organic Compounds. Critical reviews in analytical chemistry 2019, 50, 501–512. doi:10.1080/10408347.2019.1663147
  • Maurer, D. L.; Ellis, C. K.; Thacker, T. C.; Rice, S.; Koziel, J. A.; Nol, P.; VerCauteren, K. C. Screening of microbial volatile organic compounds for detection of disease in cattle: development of lab-scale method. Scientific reports 2019, 9, 12103. doi:10.1038/s41598-019-47907-w
  • Küntzel, A.; Weber, M.; Gierschner, P.; Trefz, P.; Miekisch, W.; Schubert, J. K.; Reinhold, P.; Köhler, H. Core profile of volatile organic compounds related to growth of Mycobacterium avium subspecies paratuberculosis - A comparative extract of three independent studies. PloS one 2019, 14, e0221031. doi:10.1371/journal.pone.0221031
  • Mellors, T. R.; Nasir, M.; Franchina, F. A.; Smolinska, A.; Blanchet, L.; Flynn, J. L.; Tomko, J. A.; O’Malley, M.; Scanga, C. A.; Lin, P. L.; Wagner, J. C.; Hill, J. E. Identification of Mycobacterium tuberculosis using volatile biomarkers in culture and exhaled breath. Journal of breath research 2018, 13, 016004. doi:10.1088/1752-7163/aacd18
  • Broza, Y. Y.; Vishinkin, R.; Barash, O.; Nakhleh, M. K.; Haick, H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chemical Society reviews 2018, 47, 4781–4859. doi:10.1039/c8cs00317c
  • George, M. J.; Njobeh, P. B.; Gbashi, S.; Adegoke, G. O.; Dubery, I. A.; Madala, N. E. Rapid Screening of Volatile Organic Compounds from Aframomum danielli Seeds Using Headspace Solid Phase Microextraction Coupled to Gas Chromatography Mass Spectrometry. International journal of analytical chemistry 2018, 2018, 8976304. doi:10.1155/2018/8976304
  • Küntzel, A.; Oertel, P.; Fischer, S.; Bergmann, A.; Trefz, P.; Schubert, J. K.; Miekisch, W.; Reinhold, P.; Köhler, H. Comparative analysis of volatile organic compounds for the classification and identification of mycobacterial species. PloS one 2018, 13, e0194348. doi:10.1371/journal.pone.0194348

Patents

  • HAICK HOSSAM; NAKHLEH MORAD. Sensor technology for diagnosing tuberculosis. US 10837956 B2, Nov 17, 2020.
Other Beilstein-Institut Open Science Activities