Continuous-flow catalytic asymmetric hydrogenations: Reaction optimization using FTIR inline analysis

Magnus Rueping, Teerawut Bootwicha and Erli Sugiono
Beilstein J. Org. Chem. 2012, 8, 300–307. https://doi.org/10.3762/bjoc.8.32

Cite the Following Article

Continuous-flow catalytic asymmetric hydrogenations: Reaction optimization using FTIR inline analysis
Magnus Rueping, Teerawut Bootwicha and Erli Sugiono
Beilstein J. Org. Chem. 2012, 8, 300–307. https://doi.org/10.3762/bjoc.8.32

How to Cite

Rueping, M.; Bootwicha, T.; Sugiono, E. Beilstein J. Org. Chem. 2012, 8, 300–307. doi:10.3762/bjoc.8.32

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Han, Z.; Feng, X.; Du, H. Asymmetric Transfer Hydrogenation of 2-Substituted Quinoxalines with Regenerable Dihydrophenanthridine. The Journal of organic chemistry 2024, 89, 3666–3671. doi:10.1021/acs.joc.3c02954
  • Zhang, Y.; Su, W.-K. A Review of Inline Infrared and Nuclear Magnetic Resonance Applications in Flow Chemistry. Pharmaceutical Fronts 2023, 5, e209–e218. doi:10.1055/s-0043-1776906
  • Al Azri, N.; Clifford, C.; Enick, R. M.; Veser, G. Impact of Flow Configurations on Response Time and Data Quality in Real-Time, In-Line Fourier Transform Infrared (FTIR) Monitoring of Viscous Flows. Organic Process Research & Development 2023. doi:10.1021/acs.oprd.3c00299
  • Chen, Q.; Zhu, Y.; Shi, X.; Huang, R.; Jiang, C.; Zhang, K.; Liu, G. Light-driven redox deracemization of indolines and tetrahydroquinolines using a photocatalyst coupled with chiral phosphoric acid. Chemical science 2023, 14, 1715–1723. doi:10.1039/d2sc06340a
  • Ralbovsky, N. M.; Smith, J. P. Recent Applications of Process Analytical Technology for Analysis of Industrial Asymmetric Syntheses. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2023. doi:10.1016/b978-0-32-390644-9.00087-1
  • Kochetkov, K. A.; Bystrova, N. A.; Pavlov, P. A.; Oshchepkov, M. S.; Oshchepkov, A. S. Microfluidic asymmetrical synthesis and chiral analysis. Journal of Industrial and Engineering Chemistry 2022, 115, 62–91. doi:10.1016/j.jiec.2022.08.025
  • Xu, Y.; Qiu, K.; Xiao, S.; Liang, J.; He, T.; Zhu, X. Hyperconverged autonomous organic reaction infrastructure (HAORI) driven by SpecSNN, for low dielectric constant polymer research. Digital Discovery 2022, 1, 375–381. doi:10.1039/d2dd00048b
  • Ralbovsky, N. M.; Smith, J. P. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022, 252, 123787. doi:10.1016/j.talanta.2022.123787
  • Duarte, L. C.; Pereira, I.; Maciel, L. I.; Vaz, B. G.; Coltro, W. K. T. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry. Analytica chimica acta 2021, 1190, 339252. doi:10.1016/j.aca.2021.339252
  • Fath, V.; Lau, P.; Greve, C.; Weller, P.; Kockmann, N.; Röder, T. Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. Journal of Flow Chemistry 2021, 11, 285–302. doi:10.1007/s41981-021-00140-x
  • Fath, V.; Lau, P.; Greve, C.; Weller, P.; Kockmann, N.; Röder, T. Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. Journal of Flow Chemistry 2021, 11, 1–18.
  • Farkas, G.; Madarász, J.; Bakos, J. Asymmetric Hydrogenation and Transfer Hydrogenation; Wiley, 2021; pp 307–337. doi:10.1002/9783527822294.ch10
  • Puglisi, A.; Rossi, S. Stereoselective organocatalysis and flow chemistry. Physical Sciences Reviews 2021, 6, 365–400. doi:10.1515/psr-2018-0099
  • Kim, A. N.; Stoltz, B. M. Recent Advances in Homogeneous Catalysts for the Asymmetric Hydrogenation of Heteroarenes. ACS catalysis 2020, 10, 13834–13851. doi:10.1021/acscatal.0c03958
  • Niño, C. G. Ph.D. Thesis, Aug 10, 2020.
  • Morodo, R.; Bianchi, P.; Monbaliu, J.-C. Continuous Flow Organophosphorus Chemistry. European Journal of Organic Chemistry 2020, 2020, 5236–5277. doi:10.1002/ejoc.202000430
  • Krištofíková, D.; Modrocká, V.; Mečiarová, M.; Šebesta, R. Green Asymmetric Organocatalysis. ChemSusChem 2020, 13, 2828–2858. doi:10.1002/cssc.202000137
  • Lefebvre, Q.; Porta, R.; Millet, A.; Jia, J.; Rueping, M. One Amine-3 Tasks: Reductive Coupling of Imines with Olefins in Batch and Flow. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 1363–1367. doi:10.1002/chem.201904483
  • Yasukawa, T.; Masuda, R.; Kobayashi, S. Development of heterogeneous catalyst systems for the continuous synthesis of chiral amines via asymmetric hydrogenation. Nature Catalysis 2019, 2, 1088–1092. doi:10.1038/s41929-019-0371-y
  • Sagmeister, P.; Williams, J. D.; Hone, C. A.; Kappe, C. O. Laboratory of the future: a modular flow platform with multiple integrated PAT tools for multistep reactions. Reaction Chemistry & Engineering 2019, 4, 1571–1578. doi:10.1039/c9re00087a
Other Beilstein-Institut Open Science Activities