Syntheses and applications of furanyl-functionalised 2,2’:6’,2’’-terpyridines

Jérôme Husson and Michael Knorr
Beilstein J. Org. Chem. 2012, 8, 379–389. https://doi.org/10.3762/bjoc.8.41

Cite the Following Article

Syntheses and applications of furanyl-functionalised 2,2’:6’,2’’-terpyridines
Jérôme Husson and Michael Knorr
Beilstein J. Org. Chem. 2012, 8, 379–389. https://doi.org/10.3762/bjoc.8.41

How to Cite

Husson, J.; Knorr, M. Beilstein J. Org. Chem. 2012, 8, 379–389. doi:10.3762/bjoc.8.41

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, D.-R.; Hu, L.-P.; Liu, F.-L.; Huang, X.-H.; Li, X.; Liu, B.; Teng, M.-Y.; Huang, G.-L. Catalyst-controlled and visible light-induced acylmethylation and bromoacylmethylation of Morita–Baylis–Hillman acetates with α-bromo ketones: access to highly functionalized 1,5-dicarbonyl compounds. Organic Chemistry Frontiers 2023, 10, 4927–4934. doi:10.1039/d3qo01106b
  • Huang, X.-H.; Liu, F.-L.; Fu, T.-F.; Hu, X.; Wang, Y.-Y.; Liu, B.; Teng, M.-Y.; Huang, G.-L. Visible light-induced radical cascade acylmethylation/cyclization of 2-(allyloxy)arylaldehydes with α-bromo ketones: access to cyclic 1,5-dicarbonyl-containing chroman-4-one skeletons. Organic & biomolecular chemistry 2023, 21, 6772–6777. doi:10.1039/d3ob01101a
  • Biswal, P.; Samser; Nayak, P.; Chandrasekhar, V.; Venkatasubbaiah, K. Cobalt(II)porphyrin-Mediated Selective Synthesis of 1,5-Diketones via an Interrupted-Borrowing Hydrogen Strategy Using Methanol as a C1 Source. The Journal of organic chemistry 2021, 86, 6744–6754. doi:10.1021/acs.joc.1c00476
  • Tripathi, S.; Hossain, A.; Seth, S. K.; Mukhopadhyay, S. Supramolecular association and quantification of intermolecular interactions of 4′-functionalized 2,2′:6′,2″-terpyridines: Experimental observation and theoretical studies. Journal of Molecular Structure 2021, 1226, 129254. doi:10.1016/j.molstruc.2020.129254
  • Husson, J.; Guyard, L. 4′-(N-(Propan-1,2-dienyl)pyrrol-2-yl)-2,2′:6′,2″-terpyridine. Molbank 2020, 2020, M1142. doi:10.3390/m1142
  • Wang, X.; Yue, X.; Deng, L. Synthesis and characterization of novel coumarin-based terpyridine ligands and their Zn(II) complexes:. Journal of Chemical Research 2020, 44, 721–726. doi:10.1177/1747519820918491
  • Yoshikawa, N.; Yamazaki, S.; Kato, N.; Sawai, M.; Noda, K.; Kanehisa, N.; Nakata, E.; Takashima, H. Anion Influence of Emission Properties and DFT Calculations of Diprotonated and Triprotonated Terpyridines. ChemistrySelect 2019, 4, 13284–13294. doi:10.1002/slct.201904062
  • Husson, J.; Abdeslam, E. T.; Guyard, L. A missing member in the family of chalcogenophene-substituted 2,2′:6′,2″-terpyridine: 4′-(tellurophen-2-yl)-2,2′:6′,2″-terpyridine, its Ru(II) complex and its electropolymerization as a thin film. Journal of Electroanalytical Chemistry 2019, 855, 113594. doi:10.1016/j.jelechem.2019.113594
  • Husson, J.; Guyard, L. 4′-(5-Methylfuran-2-yl)-2,2′:6′,2″-terpyridine: A New Ligand Obtained from a Biomass-Derived Aldehyde with Potential Application in Metal-Catalyzed Reactions. Molbank 2018, 2018, M1032. doi:10.3390/m1032
  • Njogu, E. M.; Martincigh, B. S.; Omondi, B.; Nyamori, V. O. Synthesis, characterization, antimicrobial screening and DNA binding of novel silver(I)–thienylterpyridine and silver(I)–furylterpyridine complexes. Applied Organometallic Chemistry 2018, 32. doi:10.1002/aoc.4554
  • Njogu, E. M.; Nyamori, V. O.; Omondi, B. Concomitant and conformational polymorphism in 4′-(isoquinolyl-2,2′:6′,2″-terpyridine and 4′-(4-quinolyl)-2,2′:6′,2″-terpyridine. Journal of Molecular Structure 2018, 1153, 202–211. doi:10.1016/j.molstruc.2017.09.072
  • Chandrappa, M.; Reddy, G. V. S.; Fazlur, R.; Murthy, B. N.; Pullela, P. K.; Kumar, S. G. Fe 3 O 4 @SiO 2 magnetic nanoparticles for bulk scale synthesis of 4′-chloro-2,2′:6′,2″-terpyridine. Chemical Papers 2017, 71, 2445–2453. doi:10.1007/s11696-017-0238-0
  • Koppolu, S. R.; Balamurugan, R. In situ formed acetals facilitated direct Michael addition of unactivated ketones. New Journal of Chemistry 2017, 41, 1186–1192. doi:10.1039/c6nj02954j
  • Liu, T.; Zhou, M.; Yuan, T.; Fu, B.; Wang, X.; Peng, F.; Shao, Z. Enantioselective Conjugate Additions of “Difficult” Ketones to Nitrodienynes and Tandem Annulations. Advanced Synthesis & Catalysis 2016, 359, 89–95. doi:10.1002/adsc.201600849
  • Ion, A. E.; Cristian, L.; Voicescu, M.; Bangesh, M.; Madalan, A. M.; Bala, D.; Mihailciuc, C.; Nica, S. Synthesis and properties of fluorescent 4′-azulenyl-functionalized 2,2′:6′,2″-terpyridines. Beilstein journal of organic chemistry 2016, 12, 1812–1825. doi:10.3762/bjoc.12.171
  • Saccone, D.; Magistris, C.; Barbero, N.; Quagliotto, P.; Barolo, C.; Viscardi, G. Terpyridine and Quaterpyridine Complexes as Sensitizers for Photovoltaic Applications. Materials (Basel, Switzerland) 2016, 9, 137. doi:10.3390/ma9030137
  • Kopchuk, D. S.; Chepchugov, N. V.; Taniya, O. S.; Kovalev, I. S.; Zyryanov, G. V.; Rusinov, V. L.; Chupakhin, O. N. Effective synthetic approach to 4′,5-Diaryl-2,2′:6′,2″-terpyridines. Russian Journal of Organic Chemistry 2015, 51, 1162–1165. doi:10.1134/s1070428015080151
  • Husson, J.; Guyard, L. Synthesis of new 4′-(N-alkylpyrrol-2-yl)-2,2′: 6′,2″-terpyridines via N-alkylation of a pyrrole moiety. Heterocyclic Communications 2015, 21, 199–202. doi:10.1515/hc-2015-0058
  • Liu, L.; Feng, S.; Li, C. A green synthesis of highly substituted 1,5-diketones. RSC Advances 2015, 5, 56949–56953. doi:10.1039/c5ra08682e
  • Belen’kii, L. I.; Evdokimenkova, Y. B. The Literature of Heterocyclic Chemistry, Part XIII, 2012–2013. Advances in Heterocyclic Chemistry 2015, 116, 193–363. doi:10.1016/bs.aihch.2015.04.002
Other Beilstein-Institut Open Science Activities