Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10

Teresa Weise, Marco Kai, Anja Gummesson, Armin Troeger, Stephan von Reuß, Silvia Piepenborn, Francine Kosterka, Martin Sklorz, Ralf Zimmermann, Wittko Francke and Birgit Piechulla
Beilstein J. Org. Chem. 2012, 8, 579–596. https://doi.org/10.3762/bjoc.8.65

Cite the Following Article

Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10
Teresa Weise, Marco Kai, Anja Gummesson, Armin Troeger, Stephan von Reuß, Silvia Piepenborn, Francine Kosterka, Martin Sklorz, Ralf Zimmermann, Wittko Francke and Birgit Piechulla
Beilstein J. Org. Chem. 2012, 8, 579–596. https://doi.org/10.3762/bjoc.8.65

How to Cite

Weise, T.; Kai, M.; Gummesson, A.; Troeger, A.; von Reuß, S.; Piepenborn, S.; Kosterka, F.; Sklorz, M.; Zimmermann, R.; Francke, W.; Piechulla, B. Beilstein J. Org. Chem. 2012, 8, 579–596. doi:10.3762/bjoc.8.65

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sabir Tariq, R. M.; Tariq, M.; Ali, S.; Aziz, S.; Mustafa, J. G. Role of Nonpathogenic Strains in Rhizosphere. Industrial Applications of Soil Microbes; BENTHAM SCIENCE PUBLISHERS, 2023; pp 113–128. doi:10.2174/9789815050264123020010
  • de Assis, M. W. V.; Brito, L. d. S.; de Lima, A. G.; de Souza, E. B.; Alexandrino, B.; Ramos, L. K. d. S.; Oliveira, M. N.; Niculau, E. d. S. Chemical profiling of healthy and infected watermelon (Citrullus lanatus) affected by bacterial fruit blotch using gas chromatography–mass spectrometry. Food Chemistry Advances 2023, 2, 100248. doi:10.1016/j.focha.2023.100248
  • Klein-Gordon, J. M.; Guingab-Cagmat, J.; Minsavage, G. V.; Meke, L.; Vallad, G. E.; Goss, E. M.; Garrett, T. J.; Jones, J. B. Strength in Numbers: Density-Dependent Volatile-Induced Antimicrobial Activity by Xanthomonas perforans. Phytopathology 2023, 113, 160–169. doi:10.1094/phyto-04-22-0131-r
  • Almeida, O. A. C.; de Araujo, N. O.; Dias, B. H. S.; de Sant'Anna Freitas, C.; Coerini, L. F.; Ryu, C.-M.; de Castro Oliveira, J. V. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens. Frontiers in microbiology 2023, 13, 951130. doi:10.3389/fmicb.2022.951130
  • Koteska, D.; Marter, P.; Huang, S.; Pradella, S.; Petersen, J.; Schulz, S. Volatiles of the Apicomplexan Alga Chromera velia and Associated Bacteria. Chembiochem : a European journal of chemical biology 2022, 24, e202200530. doi:10.1002/cbic.202200530
  • Riu, M.; Son, J.-S.; Oh, S.-K.; Ryu, C.-M. Aromatic Agriculture: Volatile Compound-Based Plant Disease Diagnosis and Crop Protection. Research in Plant Disease 2022, 28, 1–18. doi:10.5423/rpd.2022.28.1.1
  • Mülner, P.; Schwarz, E.; Dietel, K.; Herfort, S.; Jähne, J.; Lasch, P.; Cernava, T.; Berg, G.; Vater, J. Fusaricidins, Polymyxins and Volatiles Produced by Paenibacillus polymyxa Strains DSM 32871 and M1. Pathogens (Basel, Switzerland) 2021, 10, 1485. doi:10.3390/pathogens10111485
  • Kumar, M.; Charishma, K.; Sahu, K. P.; Sheoran, N.; Patel, A. K.; Kundu, A.; Kumar, A. Rice leaf associated Chryseobacterium species: An untapped antagonistic flavobacterium displays volatile mediated suppression of rice blast disease. Biological Control 2021, 161, 104703. doi:10.1016/j.biocontrol.2021.104703
  • Minerdi, D.; Maggini, V.; Fani, R. Volatile organic compounds: from figurants to leading actors in fungal symbiosis. FEMS microbiology ecology 2021, 97. doi:10.1093/femsec/fiab067
  • Dharanishanthi, V.; Orgad, A.; Rotem, N.; Hagai, E.; Kerstnus-Banchik, J.; Ben-Ari, J.; Harig, T.; Ravella, S. R.; Schulz, S.; Helman, Y. Bacterial-induced pH shifts link individual cell physiology to macroscale collective behavior. Proceedings of the National Academy of Sciences of the United States of America 2021, 118. doi:10.1073/pnas.2014346118
  • Abreo, E.; Valle, D.; González, A.; Altier, N. Control of damping-off in tomato seedlings exerted by Serratia spp. strains and identification of inhibitory bacterial volatiles in vitro. Systematic and applied microbiology 2021, 44, 126177. doi:10.1016/j.syapm.2020.126177
  • Loulier, J.; Lefort, F.; Stocki, M.; Asztemborska, M.; Szmigielski, R.; Siwek, K.; Grzywacz, T.; Hsiang, T.; Ślusarski, S.; Oszako, T.; Klisz, M.; Tarakowski, R.; Nowakowska, J. A. Detection of Fungi and Oomycetes by Volatiles Using E-Nose and SPME-GC/MS Platforms. Molecules (Basel, Switzerland) 2020, 25, 5749. doi:10.3390/molecules25235749
  • Vlassi, A.; Nesler, A.; Parich, A.; Puopolo, G.; Schuhmacher, R. Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78. Microorganisms 2020, 8, 1761. doi:10.3390/microorganisms8111761
  • Kai, M.; Elmassry, M. M.; Farag, M. A. Sampling, Detection, Identification, and Analysis of Bacterial Volatile Organic Compounds (VOCs). Bacterial Volatile Compounds as Mediators of Airborne Interactions; Springer Singapore, 2020; pp 281–304. doi:10.1007/978-981-15-7293-7_12
  • Schulz, S.; Schlawis, C.; Koteska, D.; Harig, T.; Biwer, P. Structural Diversity of Bacterial Volatiles. Bacterial Volatile Compounds as Mediators of Airborne Interactions; Springer Singapore, 2020; pp 93–121. doi:10.1007/978-981-15-7293-7_3
  • Piechulla, B.; Lemfack, M. C.; Magnus, N. Bioactive Bacterial Organic Volatiles: An Overview and Critical Comments. Bacterial Volatile Compounds as Mediators of Airborne Interactions; Springer Singapore, 2020; pp 39–92. doi:10.1007/978-981-15-7293-7_2
  • Mülner, P.; Schwarz, E.; Dietel, K.; Junge, H.; Herfort, S.; Weydmann, M.; Lasch, P.; Cernava, T.; Berg, G.; Vater, J. Profiling for Bioactive Peptides and Volatiles of Plant Growth Promoting Strains of the Bacillus subtilis Complex of Industrial Relevance. Frontiers in microbiology 2020, 11, 1432. doi:10.3389/fmicb.2020.01432
  • Kai, M. Diversity and Distribution of Volatile Secondary Metabolites Throughout Bacillus subtilis Isolates. Frontiers in microbiology 2020, 11, 559. doi:10.3389/fmicb.2020.00559
  • Schulz, S.; Biwer, P.; Harig, T.; Koteska, D.; Schlawis, C. Chemical Ecology of Bacterial Volatiles. Comprehensive Natural Products III; Elsevier, 2020; pp 161–178. doi:10.1016/b978-0-12-409547-2.14817-6
  • Heenan-Daly, D.; Velivelli, S. L. S.; Prestwich, B. D. The Role of Rhizobacterial Volatile Organic Compounds in a Second Green Revolution—The Story so Far. Sustainable Development and Biodiversity; Springer International Publishing, 2019; pp 191–220. doi:10.1007/978-3-030-30926-8_8
Other Beilstein-Institut Open Science Activities