Camera-enabled techniques for organic synthesis

Steven V. Ley, Richard J. Ingham, Matthew O’Brien and Duncan L. Browne
Beilstein J. Org. Chem. 2013, 9, 1051–1072. https://doi.org/10.3762/bjoc.9.118

Supporting Information

Supporting Information File 1: A video assembled from stop-motion photographs of the piperazic acid mixture within the crystallisation apparatus shown in Figure 11. The images were taken at one-minute intervals, and the video was then produced by using each image as a single frame. The crystallisation process can be seen to begin after about 20 s, and is visible against the dark background. A video such as this can be played back once the crystallisation is complete to record the timestamps between which the crystal formation was occurring. A new temperature gradient can then be designed based on these data.
Format: MP4 Size: 1.4 MB Download
Supporting Information File 2: A video showing a few seconds of footage during the operation of a proof-of-concept magnetic-induced flow mixer [63]. The mixer consists of a polymer tube containing a magnetic stirring bead. Outside the tubing are two electromagnetic coils, which can be energised with opposing voltages from a power supply to attract or repel the stirrer bead. This device was used to enable the processing of heterogeneous slurries in continuous flow.
Format: MP4 Size: 258.2 KB Download
Supporting Information File 3: A video showing a glass bottle containing a semipermeable polymer tubing, initially filled with an acidic solution of bromocresol green dye. At the start of the video, ammonia gas is flushed through the bottle. The colour change of the indicator dye from orange, to green and then blue shows the pH of the solution increasing as the ammonia gas passes through the tubing and dissolves into solution.
Format: MP4 Size: 1.1 MB Download

Cite the Following Article

Camera-enabled techniques for organic synthesis
Steven V. Ley, Richard J. Ingham, Matthew O’Brien and Duncan L. Browne
Beilstein J. Org. Chem. 2013, 9, 1051–1072. https://doi.org/10.3762/bjoc.9.118

How to Cite

Ley, S. V.; Ingham, R. J.; O’Brien, M.; Browne, D. L. Beilstein J. Org. Chem. 2013, 9, 1051–1072. doi:10.3762/bjoc.9.118

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Labes, R.; Pastre, J. C.; Ingham, R. J.; Battilocchio, C.; Marçon, H. M.; Damião, M. C. F. C. B.; Tran, D. N.; Ley, S. V. Automated multistep synthesis of 2-pyrazolines in continuous flow. Reaction Chemistry & Engineering 2024, 9, 558–565. doi:10.1039/d3re00515a
  • Gatarz, S. E.; Griffiths, O. M.; Esteves, H. A.; Jiao, W.; Morse, P.; Fisher, E. L.; Blakemore, D. C.; Ley, S. V. Nitro-sulfinate Reductive Coupling to Access (Hetero)aryl Sulfonamides. The Journal of organic chemistry 2024, 89, 1898–1909. doi:10.1021/acs.joc.3c02557
  • Yan, C.; Fyfe, C.; Minty, L.; Barrington, H.; Jamieson, C.; Reid, M. Computer vision as a new paradigm for monitoring of solution and solid phase peptide synthesis. Chemical science 2023, 14, 11872–11880. doi:10.1039/d3sc01383a
  • Buurma, N. J.; Bagley, S. W. A focus on computer vision for non-contact monitoring of catalyst degradation and product formation kinetics. Chemical science 2023, 14, 10994–10996. doi:10.1039/d3sc90145a
  • Bugeja, N.; Oliver, C.; McGrath, N.; McGuire, J.; Yan, C.; Carlysle-Davies, F.; Reid, M. Teaching old presumptive tests new digital tricks with computer vision for forensic applications. Digital discovery 2023, 2, 1143–1151. doi:10.1039/d3dd00066d
  • Smolders, S.; Sheng, H.; Mower, M. P.; Potdar, A.; Dijkmans, J. Automated Image-Based Color Analysis as an Accessible and Widely Applicable PAT Tool. Organic Process Research & Development 2023, 27, 1339–1347. doi:10.1021/acs.oprd.3c00097
  • Yan, C.; Cowie, M.; Howcutt, C.; Wheelhouse, K. M. P.; Hodnett, N. S.; Kollie, M.; Gildea, M.; Goodfellow, M. H.; Reid, M. Computer vision for non-contact monitoring of catalyst degradation and product formation kinetics. Chemical science 2023, 14, 5323–5331. doi:10.1039/d2sc05702f
  • Burgdorf, S.-J.; Roddelkopf, T.; Thurow, K. An Optical Approach for Cell Pellet Detection. SLAS technology 2022, 28, 32–42. doi:10.1016/j.slast.2022.11.001
  • Davies, J. C.; Pattison, D.; Hirst, J. D. Machine learning for yield prediction for chemical reactions using in situ sensors. Journal of molecular graphics & modelling 2022, 118, 108356. doi:10.1016/j.jmgm.2022.108356
  • Moreno, R.; Faina, A.; Stoy, K. Near Infrared Sensor Setup for General Interface Detection in Automatic Liquid-Liquid Extraction Processes. IEEE Sensors Journal 2022, 22, 9857–9867. doi:10.1109/jsen.2022.3164188
  • Eppel, S.; Xu, H.; Wang, Y. R.; Aspuru-Guzik, A. Predicting 3D shapes, masks, and properties of materials inside transparent containers, using the TransProteus CGI dataset. Digital Discovery 2022, 1, 45–60. doi:10.1039/d1dd00014d
  • Wills, A. G.; Charvet, S.; Battilocchio, C.; Charles, S. C.; Wheelhouse, K.; Poole, D. L.; Carson, N.; Vantourout, J. C. High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective. Organic Process Research & Development 2021, 25, 2587–2600. doi:10.1021/acs.oprd.1c00167
  • Neyt, N. C.; Riley, D. L. Application of reactor engineering concepts in continuous flow chemistry: a review. Reaction Chemistry & Engineering 2021, 6, 1295–1326. doi:10.1039/d1re00004g
  • Raju, C. M.; Yu, K.-C.; Shih, C.-P.; Elpa, D. P.; Prabhu, G. R. D.; Urban, P. L. Catalytic Oxygenation-Mediated Extraction as a Facile and Green Way to Analyze Volatile Solutes. Analytical chemistry 2021, 93, 8923–8930. doi:10.1021/acs.analchem.1c01354
  • Gambacorta, G.; Sharley, J. S.; Baxendale, I. R. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein journal of organic chemistry 2021, 17, 1181–1312. doi:10.3762/bjoc.17.90
  • Yang, F.; Lai, V.; Legard, K.; Kozdras, S.; Prieto, P. L.; Grunert, S.; Hein, J. E. Augmented Titration Setup for Future Teaching Laboratories. Journal of Chemical Education 2021, 98, 876–881. doi:10.1021/acs.jchemed.0c01394
  • Sousa, D.; Lima, J. C.; Ferreira, I. M. Image Recording and Processing Chemical Synthesis: Method Description and Demonstration. Chemistry–Methods 2020, 1, 157–161. doi:10.1002/cmtd.202000043
  • Ley, S. V.; Chen, Y.; Fitzpatrick, D. E.; May, O. Living with our machines: Towards a more sustainable future. Current Opinion in Green and Sustainable Chemistry 2020, 25, 100353. doi:10.1016/j.cogsc.2020.100353
  • Eppel, S.; Xu, H.; Bismuth, M.; Aspuru-Guzik, A. Computer Vision for Recognition of Materials and Vessels in Chemistry Lab Settings and the Vector-LabPics Data Set. ACS central science 2020, 6, 1743–1752. doi:10.1021/acscentsci.0c00460
  • Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical reviews 2020, 120, 9482–9553. doi:10.1021/acs.chemrev.0c00206
Other Beilstein-Institut Open Science Activities