C–C Bond formation catalyzed by natural gelatin and collagen proteins

Dennis Kühbeck, Basab Bijayi Dhar, Eva-Maria Schön, Carlos Cativiela, Vicente Gotor-Fernández and David Díaz Díaz
Beilstein J. Org. Chem. 2013, 9, 1111–1118. https://doi.org/10.3762/bjoc.9.123

Supporting Information

Supporting Information File 1: Optimization studies, additional experiments, figures and tables.
Format: PDF Size: 857.0 KB Download

Cite the Following Article

C–C Bond formation catalyzed by natural gelatin and collagen proteins
Dennis Kühbeck, Basab Bijayi Dhar, Eva-Maria Schön, Carlos Cativiela, Vicente Gotor-Fernández and David Díaz Díaz
Beilstein J. Org. Chem. 2013, 9, 1111–1118. https://doi.org/10.3762/bjoc.9.123

How to Cite

Kühbeck, D.; Bijayi Dhar, B.; Schön, E.-M.; Cativiela, C.; Gotor-Fernández, V.; Díaz Díaz, D. Beilstein J. Org. Chem. 2013, 9, 1111–1118. doi:10.3762/bjoc.9.123

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wang, L.; Zhang, M.; Teng, H.; Wang, Z.; Wang, S.; Li, P.; Wu, J.; Yang, L.; Xu, G. Rationally introducing non-canonical amino acids to enhance catalytic activity of LmrR for Henry reaction. Bioresources and Bioprocessing 2024, 11. doi:10.1186/s40643-024-00744-w
  • Saavedra, B.; Meli, A.; Rizzo, C.; Ramón, D. J.; D'Anna, F. Natural eutectogels: sustainable catalytic systems for C–C bond formation reactions. Green Chemistry 2021, 23, 6555–6565. doi:10.1039/d1gc01647d
  • Kowalczyk, D.; Skrzypek, T.; Basiura-Cembala, M.; Łupina, K.; Mężyńska, M. The effect of potassium sorbate on the physicochemical properties of edible films based on pullulan, gelatin and their blends. Food Hydrocolloids 2020, 105, 105837. doi:10.1016/j.foodhyd.2020.105837
  • Meninno, S. Valorization of Waste: Sustainable Organocatalysts from Renewable Resources. ChemSusChem 2019, 13, 439–468. doi:10.1002/cssc.201902500
  • Khoury, C.; Pappuru, S.; Gavriely, N.; Kleinerman, O.; Shpasser, D.; Segal-Peretz, T.; Gazit, O. M. Cooperatively Catalyzed Henry Reaction through Directed Metal‐Chitosan Interactions. ChemNanoMat 2019, 5, 1498–1505. doi:10.1002/cnma.201900431
  • Xu, C.; Nasrollahzadeh, M.; Sajjadi, M.; Maham, M.; Luque, R.; Puente-Santiago, A. R. Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications. Renewable and Sustainable Energy Reviews 2019, 112, 195–252. doi:10.1016/j.rser.2019.03.062
  • Smitha, G.; Sreekumar, K.; Elsymol, G.; Sudhishna, P. Synthesis of heterogeneous catalysts and study of its catalytic activity towards Henry reaction and Asymmetric aldol reaction. Materials Today: Proceedings 2019, 9, 46–53. doi:10.1016/j.matpr.2019.02.035
  • Wang, L.; Hou, Y.; Zhong, X.; Hu, J.; Shi, F.; Mi, H. Preparation and catalytic performance of alginate-based Schiff Base. Carbohydrate polymers 2018, 208, 42–49. doi:10.1016/j.carbpol.2018.12.062
  • Häring, M.; Tautz, M.; Alegre-Requena, J. V.; Saldías, C.; Díaz, D. D. Non-enzyme entrapping biohydrogels in catalysis. Tetrahedron Letters 2018, 59, 3293–3306. doi:10.1016/j.tetlet.2018.07.029
  • Kumar, N. S.; Bheeram, V. R.; Mukkamala, S. B.; Rao, L. C.; Vasantha, R. An Efficient and Environmentally Benign Protocol for the 1,6-Michael Addition of Nitroalkanes to 3-Methyl-4-nitro-5-styrylisoxazoles in WERSA. ChemistrySelect 2018, 3, 1915–1918. doi:10.1002/slct.201702788
  • Liu, X.; Manzur, C.; Novoa, N.; Celedón, S.; Carrillo, D.; Hamon, J.-R. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews 2018, 357, 144–172. doi:10.1016/j.ccr.2017.11.030
  • Kumari, S.; Häring, M.; Gupta, S. S.; Díaz, D. D. Catalytic Macroporous Biohydrogels Made of Ferritin-Encapsulated Gold Nanoparticles. ChemPlusChem 2016, 82, 225–232. doi:10.1002/cplu.201600454
  • Häring, M.; Pettignano, A.; Quignard, F.; Tanchoux, N.; Díaz, D. D. Keratin Protein-Catalyzed Nitroaldol (Henry) Reaction and Comparison with Other Biopolymers. Molecules (Basel, Switzerland) 2016, 21, 1122. doi:10.3390/molecules21091122
  • Mekhail, G. M.; Kamel, A. O.; Awad, G. A.; Mortada, N. D.; Rodrigo, R. L.; Spagnuolo, P. A.; Wettig, S. D. Synthesis and evaluation of alendronate-modified gelatin biopolymer as a novel osteotropic nanocarrier for gene therapy. Nanomedicine (London, England) 2016, 11, 2251–2273. doi:10.2217/nnm-2016-0151
  • Häring, M.; Pérez-Madrigal, M. M.; Kühbeck, D.; Pettignano, A.; Quignard, F.; Díaz, D. D. DNA-catalyzed Henry reaction in pure water and the striking influence of organic buffer systems. Molecules (Basel, Switzerland) 2015, 20, 4136–4147. doi:10.3390/molecules20034136
  • Miao, Y.; Rahimi, M.; Geertsema, E. M.; Poelarends, G. J. Recent developments in enzyme promiscuity for carbon-carbon bond-forming reactions. Current opinion in chemical biology 2015, 25, 115–123. doi:10.1016/j.cbpa.2014.12.020
  • Kühbeck, D.; Mayr, J.; Häring, M.; Hofmann, M.; Quignard, F.; Díaz, D. D. Evaluation of the nitroaldol reaction in the presence of metal ion-crosslinked alginates. New Journal of Chemistry 2015, 39, 2306–2315. doi:10.1039/c4nj02178a
  • Palmieri, A.; Gabrielli, S.; Sampaolesi, S.; Ballini, R. Nitroaldol (Henry) reaction of 2-oxoaldehydes with nitroalkanes as a strategic step for a useful, one-pot synthesis of 1,2-diketones. RSC Advances 2015, 5, 36652–36655. doi:10.1039/c5ra03772g
  • Pettignano, A.; Bernardi, L.; Fochi, M.; Geraci, L.; Robitzer, M.; Tanchoux, N.; Quignard, F. Alginic acid aerogel: a heterogeneous Brønsted acid promoter for the direct Mannich reaction. New Journal of Chemistry 2015, 39, 4222–4226. doi:10.1039/c5nj00349k
  • Matsumoto, K.; Asakura, S. Albumin-mediated asymmetric nitroaldol reaction of aromatic aldehydes with nitromethane in water. Tetrahedron Letters 2014, 55, 6919–6921. doi:10.1016/j.tetlet.2014.10.109
Other Beilstein-Institut Open Science Activities