Efficient Cu-catalyzed base-free C–S coupling under conventional and microwave heating. A simple access to S-heterocycles and sulfides

Silvia M. Soria-Castro and Alicia B. Peñéñory
Beilstein J. Org. Chem. 2013, 9, 467–475. https://doi.org/10.3762/bjoc.9.50

Supporting Information

Supporting Information File 1: Experimental details, characterization data and spectra (1H, 13C NMR, and HSQC or HMBC as consigned) for all the products (2a–i, 3–7, and 14).
Format: PDF Size: 2.8 MB Download

Cite the Following Article

Efficient Cu-catalyzed base-free C–S coupling under conventional and microwave heating. A simple access to S-heterocycles and sulfides
Silvia M. Soria-Castro and Alicia B. Peñéñory
Beilstein J. Org. Chem. 2013, 9, 467–475. https://doi.org/10.3762/bjoc.9.50

How to Cite

Soria-Castro, S. M.; Peñéñory, A. B. Beilstein J. Org. Chem. 2013, 9, 467–475. doi:10.3762/bjoc.9.50

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Xiang, S.; Li, M.; Xia, Z.; Fang, C.; Yang, W.; Deng, W.; Tan, Z. Photocatalyst-free visible-light-promoted C(sp2)-P coupling: efficient synthesis of aryl phosphonates. Organic & biomolecular chemistry 2024, 22, 1794–1799. doi:10.1039/d3ob01987j
  • Nian, L.; Li, W.; Dai, M.; Zhang, C.; Li, L.; Zhang, G.; Xiao, J. Highly specific imaging of pathological type I collagen in connective tissues by dual SERS peptide probes. Sensors and Actuators B: Chemical 2024, 407, 135466. doi:10.1016/j.snb.2024.135466
  • Roy, T.; Mahata, A.; Kundu, D. Recent Advances in Copper-Catalyzed Carbon Chalcogenides Cross- Coupling Reactions. Current organic synthesis 2023, 20, 267–277. doi:10.2174/1570179419666220324122735
  • Sirindil, F.; Maher, S.; Schöll, M.; Sander, K.; Årstad, E. Oxidation-Cyclisation of Biphenyl Thioethers to Dibenzothiophenium Salts for Ultrarapid 18F-Labelling of PET Tracers. International journal of molecular sciences 2022, 23, 15481. doi:10.3390/ijms232415481
  • Schäfer, G.; Merot, A.; Fleischer, T. Development of a Scalable Route for a Key Benzothiazole Building Block via a Pd-Catalyzed Migita Coupling with a Nonsmelly Thiol Surrogate. Organic Process Research & Development 2022, 26, 3373–3379. doi:10.1021/acs.oprd.2c00331
  • Zhou, Y.; Zhang, B.; Dong, J.; Li, J.; Yang, S.; Ye, L. Assembly of Benzo[c][1,2]dithiol-3-ones via Acid-Promoted Denitrogenative Transannulation of Benzotriazinones. Organic letters 2022, 24, 9012–9016. doi:10.1021/acs.orglett.2c03638
  • Beletskaya, I. P.; Ananikov, V. P. Transition-Metal-Catalyzed C-S, C-Se, and C-Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chemical reviews 2022, 122, 16110–16293. doi:10.1021/acs.chemrev.1c00836
  • Mamedov, V. A.; Algaeva, N. E.; Syakaev, V. V.; Mustakimova, L. V.; Khafizova, E. A.; Shamsutdinova, L. R.; Rizvanov, I. K.; Gubaidullin, A. T. Bromine-Promoted One-Pot Furo[b]annulation and α-C(sp2)-Thiomethylation Cascade of (E)-3-Styrylquinoxalin-2(1H)-ones with Dimethyl Sulfoxide. The Journal of organic chemistry 2022, 87, 12072–12086. doi:10.1021/acs.joc.2c01158
  • Volkov, A. A.; Bugaenko, D. I.; Bogdanov, A. V.; Karchava, A. V. Visible-Light-Driven Thioesterification of Aryl Halides with Potassium Thiocarboxylates: Transition-Metal Catalyst-Free Incorporation of Sulfur Functionalities into an Aromatic Ring. The Journal of organic chemistry 2022, 87, 8170–8182. doi:10.1021/acs.joc.2c00913
  • Hurtado-Gallego, J.; Sangtarash, S.; Davidson, R.; Rincón-García, L.; Daaoub, A.; Rubio-Bollinger, G.; Lambert, C. J.; Oganesyan, V. S.; Bryce, M. R.; Agraït, N.; Sadeghi, H. Thermoelectric Enhancement in Single Organic Radical Molecules. Nano letters 2022, 22, 948–953. doi:10.1021/acs.nanolett.1c03698
  • Zheng, W.; Xu, Y.; Lin, L. Nickel‐Catalyzed Thioesterification Enabled by a Visible‐Light Organophotoredox Catalyst under Mild Conditions. ChemPhotoChem 2022, 6. doi:10.1002/cptc.202100264
  • Rašović, A. 1,2-Dithioles. Comprehensive Heterocyclic Chemistry IV; Elsevier, 2022; pp 766–833. doi:10.1016/b978-0-12-818655-8.00137-2
  • Lombardi, L.; Mazzaro, R.; Gazzano, M.; Kovtun, A.; Morandi, V.; Bertuzzi, G.; Bandini, M. NiNPs@rGO Nanocomposites as Heterogenous Catalysts for Thiocarboxylation Cross-Coupling Reactions. Synthesis 2021, 54, 1633–1642. doi:10.1055/a-1669-0944
  • Ong, C. L.; Titinchi, S. J.; Juan, J. C.; Khaligh, N. G. An Overview of Recent Advances in the Synthesis of Organic Unsymmetrical Disulfides. Helvetica Chimica Acta 2021, 104. doi:10.1002/hlca.202100053
  • Raynbird, M. Y.; Khokhar, S. S.; Neef, D. W.; Evans, G. J. S.; Wirth, T. Synthesis of Ajoene Analogues by Novel Synthetic Strategies. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 3008–3012. doi:10.1002/chem.202005023
  • Zhong, Y.; Xu, X.; Xing, Q.; Yang, S.; Gou, J.; Gao, Z.; Yu, B. Furfuryl Cation Induced Three-Component Reaction to Synthesize Triazole-Substituted Thioesters. European Journal of Organic Chemistry 2020, 2020, 3251–3256. doi:10.1002/ejoc.202000299
  • Lin, Q.; Yao, Y.; Yang, W.; Tan, Y.; Chen, S.; Chen, D.; Yang, D. Copper-catalyzed diastereoselective hydrothioetherification of oxa(aza)benzonorbornadienes. Organic & biomolecular chemistry 2020, 18, 3575–3584. doi:10.1039/d0ob00659a
  • Huang, M.-Q.; Li, T.; Liu, J.-Q.; Shatskiy, A.; Kärkäs, M. D.; Wang, X.-S. Switchable Copper-Catalyzed Approach to Benzodithiole, Benzothiaselenole, and Dibenzodithiocine Skeletons. Organic letters 2020, 22, 3454–3459. doi:10.1021/acs.orglett.0c00907
  • Turukarabettu, V.; Kalluraya, B. Synthetic and theoretical investigation on nano-Au/TiO 2 catalyzed hydrothiolation for construction of C-S bond: Experimental and DFT study. Journal of Physical Organic Chemistry 2019, 33, 4040. doi:10.1002/poc.4040
  • Zhang, Y.; Ji, P.; Hu, W.; Wei, Y.; Huang, H.; Wang, W. Organocatalytic Transformation of Aldehydes to Thioesters with Visible Light. Chemistry (Weinheim an der Bergstrasse, Germany) 2019, 25, 8225–8228. doi:10.1002/chem.201900932
Other Beilstein-Institut Open Science Activities