Utilizing the σ-complex stability for quantifying reactivity in nucleophilic substitution of aromatic fluorides

Magnus Liljenberg, Tore Brinck, Tobias Rein and Mats Svensson
Beilstein J. Org. Chem. 2013, 9, 791–799. https://doi.org/10.3762/bjoc.9.90

Supporting Information

Supporting Information File 1: Coordinates of all optimized structures, electronic energies, SS values calculated with larger basis set, and zero-point energies.
Format: PDF Size: 442.9 KB Download

Cite the Following Article

Utilizing the σ-complex stability for quantifying reactivity in nucleophilic substitution of aromatic fluorides
Magnus Liljenberg, Tore Brinck, Tobias Rein and Mats Svensson
Beilstein J. Org. Chem. 2013, 9, 791–799. https://doi.org/10.3762/bjoc.9.90

How to Cite

Liljenberg, M.; Brinck, T.; Rein, T.; Svensson, M. Beilstein J. Org. Chem. 2013, 9, 791–799. doi:10.3762/bjoc.9.90

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Lu, J.; Paci, I.; Leitch, D. C. A broadly applicable quantitative relative reactivity model for nucleophilic aromatic substitution (SNAr) using simple descriptors. Chemical science 2022, 13, 12681–12695. doi:10.1039/d2sc04041g
  • Zaitsev, A. V.; Kononova, E. G.; Markova, A. A.; Shibaeva, A. V.; Kostyukov, A. A.; Egorov, A. E.; Kuzmin, V. A.; Shtil, A. A.; Ol'shevskaya, V. A. A straightforward approach to carborane-substituted BODIPY derivatives via nucleophilic aromatic substitution: Synthesis and photodynamic properties. Dyes and Pigments 2022, 207, 110711. doi:10.1016/j.dyepig.2022.110711
  • Matsunami, A.; Kuwata, S.; Kayaki, Y. Regioselective Transfer Hydrogenative Defluorination of Polyfluoroarenes Catalyzed by Bifunctional Azairidacycle. Organics 2022, 3, 150–160. doi:10.3390/org3030012
  • Jorner, K.; Brinck, T.; Norrby, P.-O.; Buttar, D. Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies. Chemical science 2021, 12, 1163–1175. doi:10.1039/d0sc04896h
  • Chugunova, E.; Gazizov, A. S.; Sazykina, M. A.; Akylbekov, N.; Gildebrant, A. V.; Sazykin, I. S.; Burilov, A. R.; Appazov, N. O.; Karchava, S.; Klimova, M.; Voloshina, A. D.; Sapunova, A. S.; Gumerova, S. K.; Khamatgalimov, A. R.; Gerasimova, T. P.; Dobrynin, A. B.; Gogoleva, O.; A, G. V. Design of Novel 4-Aminobenzofuroxans and Evaluation of Their Antimicrobial and Anticancer Activity. International journal of molecular sciences 2020, 21, 8292. doi:10.3390/ijms21218292
  • Lam, Y.-h.; Abramov, Y. A.; Ananthula, R. S.; Elward, J. M.; Hilden, L. R.; Lill, S. O. N.; Norrby, P.-O.; Ramirez, A.; Sherer, E. C.; Mustakis, J.; Tanoury, G. J. Applications of Quantum Chemistry in Pharmaceutical Process Development: Current State and Opportunities. Organic Process Research & Development 2020, 24, 1496–1507. doi:10.1021/acs.oprd.0c00222
  • Singh, H. A DFT investigation on aromatic nucleophilic substitution (SNAr) reaction between 4-fluoro-1-naphthaldehyde/4-fluoro-2-naphthaldehyde/1-fluoro-2-naphthaldehyde/1-fluoronaphthalene and methylthiolate ion in gas phase and in protic/aprotic solvents. Structural Chemistry 2020, 31, 2205–2213. doi:10.1007/s11224-020-01581-1
  • Ol'shevskaya, V. A.; Zaitsev, A. V.; Makarenkov, A. V.; Kononova, E. G.; Markova, A. A.; Kostyukov, A. A.; Egorov, A. E.; Klimovich, M. A.; Koroleva, O. A.; Kuzmin, V. A. Synthesis of boronated meso-arylporphyrins via copper-catalyzed 1,3-dipolar cycloaddition reaction and their binding ability towards albumin and low density lipoproteins. Journal of Organometallic Chemistry 2020, 916, 121248. doi:10.1016/j.jorganchem.2020.121248
  • Cuesta, S.; Cordova-Sintjago, T.; Mora, J. R. Sulfonylation of Five‐Membered Aromatic Heterocycles Compounds through Nucleophilic Aromatic Substitution: Concerted or Stepwise Mechanism?. ChemistrySelect 2020, 5, 4515–4524. doi:10.1002/slct.202000656
  • Rohrbach, S.; Smith, A. J.; Pang, J. H.; Poole, D. L.; Tuttle, T.; Chiba, S.; Murphy, J. A. Concerted Nucleophilic Aromatic Substitution Reactions. Angewandte Chemie (International ed. in English) 2019, 58, 16368–16388. doi:10.1002/anie.201902216
  • Rohrbach, S.; Smith, A.; Pang, J. H.; Poole, D. L.; Tuttle, T.; Chiba, S.; Murphy, J. A. Konzertierte nukleophile aromatische Substitutionen. Angewandte Chemie 2019, 131, 16518–16540. doi:10.1002/ange.201902216
  • Kwan, E. E.; Zeng, Y.; Besser, H. A.; Jacobsen, E. N. Concerted nucleophilic aromatic substitutions. Nature chemistry 2018, 10, 917–923. doi:10.1038/s41557-018-0079-7
  • Liljenberg, M.; Stenlid, J. H.; Brinck, T. Mechanism and regioselectivity of electrophilic aromatic nitration in solution: the validity of the transition state approach. Journal of molecular modeling 2017, 24, 15. doi:10.1007/s00894-017-3561-z
  • Larrañaga, O.; Romero-Nieto, C.; de Cózar, A. Intramolecular SEAr Reactions of Phosphorus Compounds: Computational Approach to the Synthesis of π-Extended Heterocycles. Chemistry (Weinheim an der Bergstrasse, Germany) 2017, 23, 17487–17496. doi:10.1002/chem.201703495
  • Stenlid, J. H.; Brinck, T. Nucleophilic Aromatic Substitution Reactions Described by the Local Electron Attachment Energy. The Journal of organic chemistry 2017, 82, 3072–3083. doi:10.1021/acs.joc.7b00059
  • Brinck, T.; Carlqvist, P.; Stenlid, J. H. Local Electron Attachment Energy and Its Use for Predicting Nucleophilic Reactions and Halogen Bonding. The journal of physical chemistry. A 2016, 120, 10023–10032. doi:10.1021/acs.jpca.6b10142
  • Krüger, J.; Leppkes, J.; Ehm, C.; Lentz, D. Competition of Nucleophilic Aromatic Substitution, σ‐Bond Metathesis, and syn Hydrometalation in Titanium(III)‐Catalyzed Hydrodefluorination of Arenes. Chemistry, an Asian journal 2016, 11, 3062–3071. doi:10.1002/asia.201601036
  • Hill, D. E.; Holland, J. P. Computational studies on hypervalent iodonium(III) compounds as activated precursors for 18F radiofluorination of electron-rich arenes. Computational and Theoretical Chemistry 2015, 1066, 34–46. doi:10.1016/j.comptc.2015.05.012
  • Cairns, A. G.; Senn, H. M.; Murphy, M. P.; Hartley, R. C. Expanding the Palette of Phenanthridinium Cations. Chemistry (Weinheim an der Bergstrasse, Germany) 2014, 20, 3742–3751. doi:10.1002/chem.201304241
Other Beilstein-Institut Open Science Activities