3 article(s) from Darcsi, Andras
Graphical Abstract
Figure 1: Reaction scheme for the synthesis of eosin Y (2) and eosin B (4).
Figure 2: Reaction scheme for the synthesis of eosin-appended β-CDs, 2–β-CD and 4–β-CD (NMM: N-methylmorpholi...
Figure 3: TLC analysis of the composition of the crude coupling reaction mixtures.
Figure 4: 1H NMR spectrum of 2–β-CD with partial assignment (DMSO-d6, 600 MHz, 298 K).
Figure 5: Size distributions of 1 mM aqueous solutions of conjugates 4–β-CD (a) and 2–β-CD (b) at 25.0 °C (pH...
Figure 6: Normalized absorption spectra of aqueous solutions of (a) eosin Y (2) and (b) conjugate 2–β-CD and ...
Figure 7: Time-resolved fluorescence observed for aqueous solutions of (a) eosin Y (2) and (b) the 2–β-CD con...
Figure 8: 1O2 luminescence detected upon 528 nm light excitation of D2O solutions of (a) eosin Y (2) and (b) 2...
Graphical Abstract
Figure 1: Structures of fluorescent xanthene dyes. Rhodamine B·HCl 1 and fluorescein disodium salt 2.
Figure 2: Reaction scheme for the synthesis of rhodamine-appended β-CD.
Figure 3: TLC plates at different development stages for monitoring the composition of Rho-β-CD crude (left p...
Figure 4: 1H NMR spectrum of Rho-β-CD with partial assignments (D2O, 500 MHz, 298 K).
Figure 5: Expansion of DEPT-ed-HSQC spectrum of Rho-β-CD with partial assignments (D2O, 500 MHz, 298 K).
Figure 6: Cartoon models for the possible intermolecular inclusion mode of Rho-β-CD in solution (3D perspecti...
Figure 7: 1H NMR spectrum of Flu-β-CD with partial assignments (D2O, 500 MHz, 298 K).
Figure 8: Cartoon models for the possible intermolecular inclusion mode of Flu-β-CD in solution (3D perspecti...
Graphical Abstract
Figure 1: Example of elucidation of 2D NMR spectra of 2-O-Cin-α-CD.
Figure 2: 2D ROESY spectrum of 2-O-Cin-α-CD in D2O at 25 °C at 24 mM concentration.
Figure 3: Expansion of the 2D ROESY spectrum of 2-O-Cin-α-CD indicating the geometric arrangement.
Figure 4: 1H NMR spectra of 2-O-Cin-α-CD in D2O at 25 °C at different concentrations.
Figure 5: 1H NMR spectra of 3-O-Cin-α-CD in D2O at 25 °C recorded at various concentrations.
Figure 6: Diffusion coefficients of 2-O-Cin-α-CD (black) and, 3-O-Cin-α-CD (red) in D2O at various concentrat...
Figure 7: Effect of solvent on the size distribution of aggregates formed by 2-O-Cin-α-CD at 25 °C (the appli...
Figure 8: Effect of a solvent on the size distribution of aggregates formed by 3-O-Cin-α-CD at 25 °C (the app...
Figure 9: Aggregate sizes (diameter) of 2-O-Cin-α-CD (black) and 3-O-Cin-α-CD (red) in water at various tempe...
Figure 10: Schematic representation of the DLS experiment proving the host–guest nature of the aggregate forma...
Figure 11: The effect of competitive additives on the size distribution of aggregates formed by 3-O-Cin-α-CD a...
Figure 12: Expansion of the 2D ROESY spectrum of 2-O-Cin-α-CD in the presence of CioOK as competitive guest mo...
Figure 13: 1H NMR spectrum of 2-O-Cin-α-CD before (up) and after (down) the addition of CioOK in 5-fold molar ...
Figure 14: The influence of 5 mM 2-O-Cin-α-CD in BGE (right column) on the decrease of the effective electroph...