4 article(s) from Haberhauer, Gebhard
Graphical Abstract
Figure 1: Chemical structure of dirhamnolipid 1.
Scheme 1: Synthesis of the dirhamnolipid esters and the chemical structure of 7.
Figure 2: Solubility of the dirhamnolipid esters in various solvents (+ = soluble, − = insoluble, G = gel).
Figure 3: Phase transition temperature for the dirhamnolipid esters in toluene while heating (TGS, blue) and ...
Figure 4: Amplitude sweep: double logarithmic plot of the dynamic moduli against the amplitude (deformation) ...
Figure 5: Frequency sweep: double logarithmic plot of the dynamic moduli against the frequency for the dirham...
Figure 6: Double logarithmic plot of (a) the plateau modulus G0 and (b) the relaxation time τR against the co...
Figure 7: Semilogarithmic plot of (a) G0/G''min, (b) η0, and (c) τR against the inverse absolute temperature ...
Figure 8: Polarized optical microscopy (POM) images of the 2/toluene system (5 wt %) with crossed polarizers ...
Figure 9: Schematic representation of the formation of RWLM by dirhamnolipid esters.
Graphical Abstract
Figure 1: Some examples for artificial C2- and C3-symmetric platforms based on Lissoclinum cyclopeptide alkal...
Figure 2: a) Principle of a chiral foldable platform and container based on Lissoclinum cyclopeptide alkaloid...
Scheme 1: Synthesis of the chiral foldable container 10. Reaction conditions: i) FDPP, iPr2NEt, CH3CN, 90%; i...
Figure 3: Molecular structures of trans,trans-10 (left), cis,trans-10 (middle) and cis,cis-10 (right) calcula...
Figure 4: UV spectra of the foldable container 10 in acetonitrile after synthesis (blue), after irradiation w...
Figure 5: Section from the 1H NMR spectra of the foldable container 10 in MeOD at 600 MHz: a) after synthesis...
Figure 6: HPLC spectra (ReproSil Phenyl, 5 μm, 250 × 8 mm; methanol) of trans,trans-10 (blue), cis,trans-10 (...
Figure 7: CD spectra of trans,trans-10 (blue), cis,trans-10 (green), and cis,cis-10 (red) in methanol (c = 3....
Figure 8: DOSY NMR spectra (500 MHz in MeOD at 25 °C) of the foldable container 10 after synthesis (left) and...
Graphical Abstract
Scheme 1: Principle of the switching mechanism of 2-(2-hydroxyphenyl)pyridine (2) and 2-(2-methoxyphenyl)pyri...
Figure 1: (a) Calculated energy profiles of the pyridine derivatives 1 (blue) and 2 (red) in relation to the ...
Scheme 2: Principle of the switching mechanism of 2-(2-hydroxyphenyl)-3-methylpyridine (6) and 2-(2-methoxyph...
Figure 2: (a) Calculated energy profiles of the 3-methylpyridine derivatives 5 (blue) and 6 (red) in relation...
Figure 3: UV spectral change of phenolate 5 (blue) in dichloromethane (c = 5.6 × 10−5 M) at 20 °C upon additi...
Figure 4: UV spectral change of 3-methylpyridine 7 (blue) in dichloromethane (c = 5.6 × 10–5 M) at 20 °C upon...
Figure 5: HOMO (left) and LUMO (right) of the 3-methylpyridine 7 calculated by using B3LYP/6-31G*.
Scheme 3: Synthesis of the methoxyphenylpyridine switch 10 and the hydroxypyridine switch 12; reaction condit...
Figure 6: (a) CD spectral change of pyridine switch 13 (blue) in dichloromethane (c = 5.6 × 10–5 M) at 20 °C ...
Figure 7: (a) CD spectral change of pyridine switch 10 (blue) in dichloromethane (c = 5.6 × 10–5 M) at 20 °C ...
Graphical Abstract
Figure 1: Structural formula of the siderophore enterobactine.
Scheme 1: Preparation of the compound 1a-H3 by utilization of a multiple Claisen-rearrangement.
Figure 2: 1H NMR spectra (300 MHz, CDCl3) of the ether compound 4 (top) and the ligand 1a-H3 (bottom).
Figure 3: Positive ESI MS of [(1a)La] in chloroform showing the peaks of {K[(1a)La]}+ (m/z = 1600.8) as well ...
Figure 4: CD and UV absorption titration curves for complexation of ligand 1a-H3 with lanthanum(III)nitrate h...
Figure 5: Titration curve observed for ligand 1a-H3 upon addition of lanthanum(III) nitrate hexahydrate.
Figure 6: Molecular structures of the Λ2 (left) and Δ2 (right) isomers of complex 1b·La calculated by using B...
Figure 7: UV and CD spectra of the complex (Λ)-1·La. Blue and violet curve: experimentally determined spectra...