This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2025, 21, 1552–1560, doi:10.3762/bjoc.21.118
Graphical Abstract
Figure 1: Design and synthetic strategies for the target hydantoin/1,2,4-oxadiazoline spiro-compounds.
Scheme 1: Synthesis of dipolarophiles (5-iminohydantoins 2a–i).
Scheme 2: Preparation of the dipole precursors 4a–d.
Scheme 3: 32CA reactions of nitrile oxides with 5-iminohydantoins (synthesis of spiro-compounds 5a–l). Isolat...
Scheme 4: Cycloaddition of nitrile oxide to 5-iminothiohydantoin 2j. aTriethylamine dropwise addition (2.4 eq...
Figure 2: Atropoisomerism of ortho-substituted spiro-compounds 5b and 5d.
Figure 3: Cytotoxicity investigation of hydantoin/1,2,4-oxadiazolines 5 (MTT test, HCT116 cell line) and sele...
Beilstein J. Org. Chem. 2025, 21, 262–269, doi:10.3762/bjoc.21.18
Scheme 1: Knoevenagel and Diels–Alder reactions in the multicomponent synthesis of substituted cyclohexadiene...
Figure 1: Equipment for carrying out reactions by the diffusion mixing method.
Scheme 2: Interaction of diketone 1 with formaldehyde under the diffusion mixing conditions.
Scheme 3: Products of three-component reactions of methylene derivatives, formaldehyde and various dienes.
Scheme 4: Proposed mechanism for the formation of compounds 8 and 9 in the presence of ʟ-proline.
Scheme 5: Interconversion of derivatives 8 and 9.
Scheme 6: Interaction of 4a/4b and 5a/5b mixtures with bromine.