This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2025, 21, 1737–1741, doi:10.3762/bjoc.21.136
Graphical Abstract
Scheme 1: Proposed approach for the preparation of vinyloxazoline 6.
Scheme 2: Synthesis of furfuryl amino alcohols S-2d and R-2d and their electrochemical oxidation to esters S-...
Scheme 3: Cleavage of the N-Alloc group leading to a mixture of isomers cis-S-5 and trans-S-5.
Scheme 4: Cleavage of the N-Alloc group with PdCl2(S-BINAP) leading to trans-S-5 and trans-R-5.
Scheme 5: Cyclization of amides trans-S-5 and trans-R-5 to oxazolines S-6 and R-6.
Scheme 6: aza-Diels–Alder reaction of vinyloxazoline S-6 with TsNCO.
Scheme 7: The proposed mechanism of product 7 formation.
Beilstein J. Org. Chem. 2015, 11, 2166–2170, doi:10.3762/bjoc.11.234
Figure 1: Electrochemical oxidation of 1 in deareated (blue) and O2 saturated (red) solutions of CH2Cl2/0.1 M...
Figure 2: The X-ray structures of compounds 1 and 2.
Figure 3: Decrease of the UV absorption band of compound 1 under irradiation (254 nm) in air-saturated CHCl3, ...
Scheme 1: Photoinduced reaction of 1 in O2 saturated CHCl3 under irradiation by intensive sunlight.
Scheme 2: Heterocycle transformations of 1 in air saturated CHCl3 solutions.
Scheme 3: Proposed mechanism of conversion of oxaziridine 4 to 5.
Figure 4: The X-ray structures of compounds 4 and 5.