Search results

Search for "TADF" in Full Text gives 29 result(s) in Beilstein Journal of Organic Chemistry.

Recent advances in materials for organic light emitting diodes

  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2018, 14, 1944–1945, doi:10.3762/bjoc.14.168

Graphical Abstract
  • in design, from fluorescent compounds to phosphorescent organometallic complexes to organic thermally activated delayed fluorescence (TADF) molecules, the latter driving tremendous recent excitement within the field of organic semiconductor research. This thematic issue of the Beilstein Journal of
  • Organic Chemistry covers novel phosphorescent and TADF materials design and their inclusion as emitters in OLEDs. Some highlights in this issue include the work of Thanh-Tuân Bui et al., who provide a welcome perspective on blue TADF materials for OLEDs in the form of a review article [2]. Cristina
  • molecular design approach for orange-emitting TADF molecules employing a fluorenone acceptor [5]. In the full research paper by Feng-Ming Xie et al., they disclose two bipolar, high-energy phenothiazine-5,5-dioxide-based host materials conceived to be used for deep blue OLED devices [6]. The articles in
PDF
Editorial
Published 27 Jul 2018

D–A–D-type orange-light emitting thermally activated delayed fluorescence (TADF) materials based on a fluorenone unit: simulation, photoluminescence and electroluminescence studies

  • Lin Gan,
  • Xianglong Li,
  • Xinyi Cai,
  • Kunkun Liu,
  • Wei Li and
  • Shi-Jian Su

Beilstein J. Org. Chem. 2018, 14, 672–681, doi:10.3762/bjoc.14.55

Graphical Abstract
  • . China 10.3762/bjoc.14.55 Abstract The design of orange-light emitting, thermally activated, delayed fluorescence (TADF) materials is necessary and important for the development and application of organic light-emitting diodes (OLEDs). Herein, two donor–acceptor–donor (D–A–D)-type orange TADF materials
  • exciton utilization of TADF materials. Importantly, OLEDs based on 2 exhibited a maximum external quantum efficiency of 8.9%, which is higher than the theoretical efficiency of the OLEDs based on conventional fluorescent materials. Keywords: fluorenone acceptor; orange light emission; organic light
  • increase the cost of the final OLEDs. Alternatively, a thermally activated delayed fluorescence (TADF) material is a kind of noble-metal-free fluorescent material able to transform triplet excitons into singlet excitons through reverse intersystem crossing (RISC) to achieve 100% IQEmax in theory [4]. On the
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2018

Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs)

  • Thanh-Tuân Bui,
  • Fabrice Goubard,
  • Malika Ibrahim-Ouali,
  • Didier Gigmes and
  • Frédéric Dumur

Beilstein J. Org. Chem. 2018, 14, 282–308, doi:10.3762/bjoc.14.18

Graphical Abstract
  • activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular
  • popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years. Keywords: blue; electroluminescence; emitter; OLED; TADF; Introduction Since the pioneering works of Tang and VanSlyke in
  • delayed fluorescence (TADF) emitters. As specificity, these materials can thermally repopulate the singlet state from the triplet state by reverse intersystem crossing (RISC), leading to an increase of the luminescence intensity. From the OLEDs viewpoint, TADF emitters behave by harvesting both singlet
PDF
Album
Review
Published 30 Jan 2018

Palladium-catalyzed synthesis of N-arylated carbazoles using anilines and cyclic diaryliodonium salts

  • Stefan Riedmüller and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2013, 9, 1202–1209, doi:10.3762/bjoc.9.136

Graphical Abstract
  • , or as host or luminescent-materials in electronic devices (OLEDs) (Figure 1) [2][3][4][5][6][7]. Representative examples are the host molecules mCP, CBP and CBZ1-F2, the hole transporter BCz2 [8] or the recently described thermally activated delayed fluorescence (TADF) emitter 4CzIPN [9]. Therefore
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2013
Other Beilstein-Institut Open Science Activities