Search for "spiro compound" in Full Text gives 29 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2012, 8, 1936–1998, doi:10.3762/bjoc.8.225
Graphical Abstract
Figure 1: Loschmidt’s structure proposal for benzene (1) (Scheme 181 from [3]) and the corresponding modern stru...
Figure 2: The first isolated bisallenes.
Figure 3: Carbon skeletons of selected bisallenes discussed in this review.
Scheme 1: The preparation of 1,2,4,5-hexatetraene (2).
Scheme 2: The preparation of a conjugated bisallene by the DMS-protocol.
Scheme 3: Preparation of the 3-deuterio- and 3,4-dideuterio derivatives of 24.
Scheme 4: A versatile method to prepare alkylated conjugated bisallenes and other allenes.
Scheme 5: A preparation of 3,4-dimethyl-1,2,4,5-hexatetraene (38).
Scheme 6: A (C6 + 0)-approach to 1,2,4,5-hexatetraene (2).
Scheme 7: The preparation of a fully alkylated bisallenes from a 2,4-hexadiyne-1,6-diol diacetate.
Scheme 8: The preparation of the first phenyl-substituted conjugated bisallenes 3 and 4.
Scheme 9: Selective hydrogenation of [5]cumulenes to conjugated bisallenes: another (C6 + 0)-route.
Scheme 10: Aryl-substituted conjugated bisallenes by a (C3 + C3)-approach.
Scheme 11: Hexaphenyl-1,2,4,5-hexatetraene (59) by a (C3 + C3)-approach.
Scheme 12: An allenation route to conjugated bisallenes.
Scheme 13: The preparation of 3,4-difunctionalized conjugated bisallenes.
Scheme 14: Problems during the preparation of sulfur-substituted conjugated bisallenes.
Scheme 15: The preparation of 3,4-dibromo bisallenes.
Scheme 16: Generation of allenolates by an oxy-Cope rearrangement.
Scheme 17: A linear trimerization of alkynes to conjugated bisallenes: a (C2 + C2 + C2)-protocol.
Scheme 18: Preparation of a TMS-substituted conjugated bisallene by a C3-dimerization route.
Scheme 19: A bis(trimethylsilyl)bisallene by a C3-coupling protocol.
Scheme 20: The rearrangement of highly substituted benzene derivatives into their conjugated bisallenic isomer...
Scheme 21: From fully substituted benzene derivatives to fully substituted bisallenes.
Scheme 22: From a bicyclopropenyl to a conjugated bisallene derivative.
Scheme 23: The conversion of a bismethylenecyclobutene into a conjugated bisallene.
Scheme 24: The preparation of monofunctionalized bisallenes.
Scheme 25: Preparation of bisallene diols and their cyclization to dihydrofurans.
Scheme 26: A 3,4-difunctionalized conjugated bisallene by a C3-coupling process.
Scheme 27: Preparation of a bisallenic diketone by a coupling reaction.
Scheme 28: Sulfur and selenium-substituted bisallenes by a [2.3]sigmatropic rearrangement.
Scheme 29: The biallenylation of azetidinones.
Scheme 30: The preparation of a fully ferrocenylated conjugated bisallene.
Scheme 31: The first isomerization of a 1,5-hexadiyne to a 1,2,4,5-hexatetraene.
Scheme 32: The preparation of alkynyl-substituted bisallenes by a C3-dimerization protocol.
Scheme 33: Preparation of another completely ferrocenylated bisallene.
Scheme 34: The cyclization of 1,5-hexadiyne (129) to 3,4-bismethylenecyclobutene (130) via 1,2,4,5-hexatetraen...
Scheme 35: Stereochemistry of the thermal cyclization of bisallenes to bismethylenecyclobutenes.
Scheme 36: Bisallene→bismethylenecyclobutene ring closures in the solid state.
Scheme 37: A bisallene cyclization/dimerization reaction.
Scheme 38: A selection of Diels–Alder additions of 1,2,4,5-hexatetraene with various double-bond dienophiles.
Scheme 39: The stereochemistry of the [2 + 4] cycloaddition to conjugated bisallenes.
Scheme 40: Preparation of azetidinone derivatives from conjugated bisallenes.
Scheme 41: Cycloaddition of heterodienophiles to a conjugated bisallene.
Scheme 42: Addition of triple-bond dienophiles to conjugated bisallenes.
Scheme 43: Sulfur dioxide addition to conjugated bisallenes.
Scheme 44: The addition of a germylene to a conjugated bisallene.
Scheme 45: Trapping of conjugated bisallenes with phosphinidenes.
Scheme 46: The cyclopropanantion of 1,2,4,5-hexatetraene (2).
Scheme 47: Photochemical reactions involving conjugated bisallenes.
Scheme 48: Base-catalyzed isomerizations of conjugated bisallenes.
Scheme 49: Ionic additions to a conjugated bisallene.
Scheme 50: Oxidation reactions of a conjugated bisallene.
Scheme 51: The mechanism of oxidation of the bisallene 24.
Scheme 52: CuCl-catalyzed cyclization of 1,2,4,5-hexatetraene (2).
Scheme 53: The conversion of conjugated bisallenes into cyclopentenones.
Scheme 54: Oligomerization of a conjugated bisallene by nickel catalysts.
Scheme 55: Generation of 1,2,5,6-heptatetraene (229) as a reaction intermediate.
Scheme 56: The preparation of a stable derivative of 1,2,5,6-heptatetraene.
Scheme 57: A bisallene with a carbonyl group as a spacer element.
Scheme 58: The first preparation of 1,2,6,7-octatetraene (242).
Scheme 59: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of enynes.
Scheme 60: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of homoallenyl bromides.
Scheme 61: Preparation of 1,2,6,7-octatetraenes by alkylation of propargylic substrates.
Scheme 62: Preparation of two highly functionalized 1,2,6,7-octatetraenes.
Scheme 63: Preparation of several higher α,ω-bisallenes.
Scheme 64: Preparation of different alkyl derivatives of α,ω-bisallenes.
Scheme 65: The preparation of functionalized 1,2,7,8-nonatetraene derivatives.
Scheme 66: Preparation of functionalized α,ω-bisallenes.
Scheme 67: The preparation of an α,ω-bisallene by direct homologation of an α,ω-bisalkyne.
Scheme 68: The gas-phase pyrolysis of 4,4-dimethyl-1,2,5,6-heptatetraene (237).
Scheme 69: Gas-phase pyrolysis of 1,2,6,7-octatetraene (242).
Scheme 70: The cyclopropanation of 1,2,6,7-octatetraene (242).
Scheme 71: Intramolecular cyclization of 1,2,6,7-octatetraene derivatives.
Scheme 72: The gas-phase pyrolysis of 1,2,7,8-nonatetraene (265) and 1,2,8,9-decatetraene (266).
Scheme 73: Rh-catalyzed cyclization of a functionalized 1,2,7,8-nonatetraene.
Scheme 74: A triple cyclization involving two different allenic substrates.
Scheme 75: Bicyclization of keto derivatives of 1,2,7,8-nonatetraene.
Scheme 76: The preparation of complex organic compounds from functionalized bisallenes.
Scheme 77: Cycloisomerization of an α,ω-bisallene containing a C9 tether.
Scheme 78: Organoborane polymers from α,ω-bisallenes.
Scheme 79: Preparation of trans- (337) and cis-1,2,4,6,7-octapentaene (341).
Scheme 80: The preparation of 4-methylene-1,2,5,6-heptatetraene (349).
Scheme 81: The preparation of acetylenic bisallenes.
Scheme 82: The preparation of derivatives of hydrocarbon 351.
Scheme 83: The construction of macrocyclic alleno-acetylenes.
Scheme 84: Preparation and reactions of 4,5-bismethylene-1,2,6,7-octatetraene (365).
Scheme 85: Preparation of 1,2-bis(propadienyl)benzene (370).
Scheme 86: The preparation of 1,4-bis(propadienyl)benzene (376).
Scheme 87: The preparation of aromatic and heteroaromatic bisallenes by metal-mediated coupling reactions.
Scheme 88: Double cyclization of an aromatic bisallene.
Scheme 89: Preparation of an allenic [15]paracyclophane by a ring-closing metathesis reaction of an aromatic α...
Scheme 90: Preparation of a macrocyclic ring system containing 1,4-bis(propadienyl)benzene units.
Scheme 91: Preparation of copolymers from 1,4-bis(propadienyl)benzene (376).
Scheme 92: A boration/copolymerization sequence of an aromatic bisallene and an aromatic bisacetylene.
Scheme 93: Formation of a layered aromatic bisallene.
Figure 4: The first members of the semicyclic bisallene series.
Scheme 94: Preparation of the first bis(vinylidene)cyclobutane derivative.
Scheme 95: Dimerization of strain-activated cumulenes to bis(vinylidene)cyclobutanes.
Scheme 96: Photodimerization of two fully substituted butatrienes in the solid state.
Scheme 97: Preparation of the two parent bis(vinylidene)cyclobutanes.
Scheme 98: The preparation of 1,3-bis(vinylidene)cyclopentane and its thermal isomerization.
Scheme 99: The preparation of the isomeric bis(vinylidene)cyclohexanes.
Scheme 100: Bi- and tricyclic conjugated bisallenes.
Scheme 101: A selection of polycyclic bisallenes.
Scheme 102: The first endocyclic bisallenes.
Figure 5: The stereochemistry of 1,2,6,7-cyclodecatetraene.
Scheme 103: The preparation of several endocyclic bisallenes.
Scheme 104: Synthesis of diastereomeric derivatives of 1,2,6,7-cyclodecatetraene.
Scheme 105: Preparation of a derivative of 1,2,8,9-cyclotetradecatetraene.
Scheme 106: The preparation of keto derivatives of cyclic bisallenes.
Scheme 107: The preparation of cyclic biscumulenic ring systems.
Scheme 108: Cyclic bisallenes in natural- and non-natural-product chemistry.
Scheme 109: The preparation of iron carbonyl complexes from cyclic bisallenes.
Figure 6: A selection of unknown exocyclic bisallenes that should have interesting chemical properties.
Scheme 110: The thermal isomerization of 1,2-diethynylcyclopropanes and -cyclobutanes.
Scheme 111: Intermediate generation of a cyclooctapentaene.
Scheme 112: Attempted preparation of a cyclodecahexaene.
Scheme 113: The thermal isomerization of 1,5,9-cyclododecatriyne (511) into [6]radialene (514).
Scheme 114: An isomerization involving a diketone derived from a conjugated bisallene.
Scheme 115: Typical reaction modes of heteroorganic bisallenes.
Scheme 116: Generation and thermal behavior of acyclic hetero-organic bisallenes.
Scheme 117: Generation of bis(propadienyl)thioether.
Scheme 118: The preparation of a bisallenic sulfone and its thermal isomerization.
Scheme 119: Bromination of the bisallenic sulfone 535.
Scheme 120: Metalation/hydrolysis of the bisallenic sulfone 535.
Scheme 121: Aromatic compounds from hetero bisallenes.
Scheme 122: Isomerization/cyclization of bispropargylic ethers.
Scheme 123: The preparation of novel aromatic systems by base-catalyzed isomerization of bispropargyl ethers.
Scheme 124: The isomerization of bisacetylenic thioethers to bicyclic thiophenes.
Scheme 125: Aromatization of macrocyclic bispropargylic sulfides.
Scheme 126: Preparation of ansa-compounds from macrocyclic bispropargyl thioethers.
Scheme 127: Alternate route for cyclization of a heterorganic bisallene.
Scheme 128: Multiple isomerization/cyclization of “double” bispropargylic thioethers.
Scheme 129: Preparation of a bisallenyl disulfide and its subsequent bicyclization.
Scheme 130: Thermal cyclization of a bisallenyl thiosulfonate.
Scheme 131: Some reactions of heteroorganic bisallenes with two sulfur atoms.
Scheme 132: Further methods for the preparation of heteroorganic bisallenes.
Scheme 133: Cyclization reactions of heteroorganic bisallenes.
Scheme 134: Thermal cycloadditions of bisallenic tertiary amines.
Scheme 135: Cyclization of a bisallenic tertiary amine in the presence of a transition-metal catalyst.
Scheme 136: A Pauson–Khand reaction of a bisallenic ether.
Scheme 137: Formation of a 2:1adduct from two allenic substrates.
Scheme 138: A ring-forming silastannylation of a bisallenic tertiary amine.
Scheme 139: A three-component cyclization involving a heterorganic bisallene.
Scheme 140: Atom-economic construction of a complex organic framework from a heterorganic α,ω-bisallene.
Beilstein J. Org. Chem. 2011, 7, 699–716, doi:10.3762/bjoc.7.81
Graphical Abstract
Scheme 1: Well-defined Mo- and Ru-alkylidene metathesis catalysts.
Scheme 2: Representative pyrrolidine-based iminocyclitols.
Scheme 3: Synthesis of (±)-(2R*,3R*,4S*)-2-hydroxymethylpyrrolidin-3,4-diol (18), (±)-2-hydroxymethylpyrrolid...
Scheme 4: Synthesis of enantiopure iminocyclitol (−)-(2S,3R,4S,5S)-2,5-dihydroxymethylpyrrolidin-3,4-diol (23...
Scheme 5: Synthesis of 1,4-dideoxy-1,4-imino-D-allitol (29) and formal synthesis of (2S,3R,4S)-3,4-dihydroxyp...
Scheme 6: Synthesis of iminocyclitols 35 and 36.
Scheme 7: Total synthesis of iminocyclitols 40 and 44.
Scheme 8: Synthesis of 2,5-dideoxy-2,5-imino-D-mannitol [(+)-DMDP] (49) and (−)-bulgecinine (50).
Scheme 9: Synthesis of (+)-broussonetine G (53).
Scheme 10: Structural features of broussonetines 54.
Scheme 11: Synthesis of broussonetines by cross-metathesis.
Scheme 12: Representative piperidine-based iminocyclitols.
Scheme 13: Total synthesis of 1-deoxynojirimycin (62) and 1-deoxyaltronojirimycin (65).
Scheme 14: Synthesis by RCM of 1-deoxymannonojirimycin (63) and 1-deoxyallonojirimycin (66).
Scheme 15: Total synthesis of (+)-1-deoxynojirimycin (62).
Scheme 16: Synthesis of ent-1,6-dideoxynojirimycin (83) and 5-amino-1,5,6-trideoxyaltrose (84).
Scheme 17: Synthesis of 1-deoxygalactonojirimycin (64), 1-deoxygulonojirimycin (91) and 1-deoxyidonojirimycin (...
Scheme 18: Synthesis of L-1-deoxyaltronojirimycin (96).
Scheme 19: Synthesis of 1-deoxymannonojirimycin (63) and 1-deoxyaltronojirimycin (65).
Scheme 20: Synthesis of 5-des(hydroxymethyl)-1-deoxymannonojirimycin (111) and 5-des(hydroxymethyl)-1-deoxynoj...
Scheme 21: Synthesis of D-1-deoxygulonojirimycin (91) and L-1-deoxyallonojirimycin (122).
Scheme 22: Total synthesis of fagomine (129), 3-epi-fagomine (126) and 3,4-di-epi-fagomine (130).
Scheme 23: Total synthesis of (+)-adenophorine (135).
Scheme 24: Total synthesis of (+)-5-deoxyadenophorine (138) and analogues 142–145.
Scheme 25: Synthesis by RCM of 1,6-dideoxy-1,6-iminoheptitols 148 and 149.
Scheme 26: Synthesis by RCM of oxazolidinyl azacycles 152 and 154.
Scheme 27: Representative azepane-based iminocyclitols.
Scheme 28: Synthesis of hydroxymethyl-1-(4-methylphenylsulfonyl)azepane 3,4,5-triol (169).
Scheme 29: Synthesis by RCM of tetrahydropyridin-3-ol 171 and tetrahydroazepin-3-ol 173.
Beilstein J. Org. Chem. 2011, 7, 525–542, doi:10.3762/bjoc.7.61
Graphical Abstract
Scheme 1: Photochemistry of benzene.
Scheme 2: Three distinct modes of photocycloaddition of arenes to alkenes.
Scheme 3: Mode selectivity with respect of the free enthalpy of the radical ion pair formation.
Scheme 4: Photocycloaddition shows lack of mode selectivity.
Scheme 5: Mechanism of the meta photocycloaddition.
Scheme 6: Evidence of biradiacal involved in meta photocycloaddition by Reedich and Sheridan.
Scheme 7: Regioselectivity with electron withdrawing and electron donating substituents.
Scheme 8: Closure of cyclopropyl ring affords regioisomers.
Scheme 9: Endo versus exo product in the photocycloaddition of pentene to anisole [33].
Scheme 10: Regio- and stereoselectivity in the photocycloaddition of cyclopentene with a protected isoindoline....
Scheme 11: 2,6- and 1,3-addition in intramolecular approach.
Scheme 12: Linear and angularly fused isomers can be obtained upon intramolecular 1,3-addition.
Scheme 13: Synthesis of α-cedrene via diastereoselective meta photocycloaddition.
Scheme 14: Asymmetric meta photocycloaddition introduced by chirality of tether at position 2.
Scheme 15: Enantioselective meta photocycloaddition in β-cyclodextrin cavity.
Scheme 16: Vinylcyclopropane–cyclopentene rearrangement.
Scheme 17: Further diversification possibilities of the meta photocycloaddition product.
Scheme 18: Double [3 + 2] photocycloaddition reaction affording fenestrane.
Scheme 19: Total synthesis of Penifulvin B.
Scheme 20: Towards the total synthesis of Lacifodilactone F.
Scheme 21: Regioselectivity of ortho photocycloaddition in polarized intermediates.
Scheme 22: Exo and endo selectivity in ortho photocycloaddition.
Scheme 23: Ortho photocycloaddition of alkanophenones.
Scheme 24: Photocycloadditions to naphtalenes usually in an [2 + 2] mode [79].
Scheme 25: Ortho photocycloaddition followed by rearrangements.
Scheme 26: Stable [2 + 2] photocycloadducts.
Scheme 27: Ortho photocycloadditions with alkynes.
Scheme 28: Intramolecular ortho photocycloaddition and rearrangement thereof.
Scheme 29: Intramolecular ortho photocycloaddition to access propellanes.
Scheme 30: Para photocycloaddition with allene.
Scheme 31: Photocycloadditions of dianthryls.
Scheme 32: Photocycloaddition of enone with benzene.
Scheme 33: Intramolecular photocycloaddition affording multicyclic compounds via [4 + 2].
Scheme 34: Photocycloaddition described by Sakamoto et al.
Scheme 35: Proposed mechanism by Sakamoto et al.
Scheme 36: Photocycloaddition described by Jones et al.
Scheme 37: Proposed mechanism for the formation of benzoxepine by Jones et al.
Scheme 38: Photocycloaddition observed by Griesbeck et al.
Scheme 39: Mechanism proposed by Griesbeck et al.
Scheme 40: Intramolecular photocycloaddition of allenes to benzaldehydes.
Beilstein J. Org. Chem. 2009, 5, No. 31, doi:10.3762/bjoc.5.31
Graphical Abstract
Scheme 1: Behaviour of benzanthrone (1) towards phenylmagnesium chloride (a), phenyl lithium (b), and bipheny...
Figure 1: 1H NMR spectra (200 MHz) of 4 in CDCl3 solution and time dependence.
Scheme 2: Proposed mechanism for the formation of 4 and its oxidation to 7.
Scheme 3: Conversion of the enol 4 under acidic conditions and reaction products.
Scheme 4: Proposed mechanism for the formation of spiro compound 11 and bicyclo[4.3.1]decane derivative 12.
Scheme 5: Proposed mechanism for the formation of 13.
Scheme 6: Proposed mechanism for the formation of 18 as a hydride source and further conversion to 7.
Figure 2: Ellipsoid representation (50% level) of compound 7 in the crystal.
Figure 3: Packing diagram of compound 7 viewed parallel to b; hydrogen bonds C-H···O are indicated by dashed ...
Figure 4: Ellipsoid representation (50% level) of compound 11 in the crystal.
Figure 5: Packing diagram of compound 11 viewed perpendicular to the bc plane; hydrogen bonds C-H···π are ind...
Figure 6: Ellipsoid representation (50% level) of compound 13 (d6-DMSO solvate) in the crystal. Hydrogen bond...
Figure 7: Packing diagram of compound 13 viewed parallel to c; DMSO molecules (including their hydrogen bonds...