Search results

Search for "hemithioacetal" in Full Text gives 7 result(s) in Beilstein Journal of Organic Chemistry.

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • cyclic hemithioacetal dimer). The chemistry and synthetic applications of reagent 4 and related α-thiocarbonyl substances have been reviewed in detail elsewhere [27], and they are rarely used as building blocks for 1,4-dithiane-type targets. For the synthesis of 5,6-dihydro-1,4-dithiin (2), several
PDF
Album
Review
Published 02 Feb 2023

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • transesterification to give the hemithioacetal 39, which cyclized to the oxathiolane 40 in situ with minor isomerization. The reduction of the ester group with LiAlH4, followed by benzoylation using benzoyl chloride and pyridine gave 1,3-oxathiolane derivative 41. Kraus and Attardo [48] developed new strategies for
  • process that reached 96.5% ee through the combination of the reversible hemithioacetal transformation and the enantioselective lactonization catalyzed by the immobilized lipase from Trichosporon laibachii (Scheme 24). As a result, the desired stereochemistry of 1,3-oxathiolane precursors 71 and 72 was
  • achieved. In 2014, Zhang et al. [64] reported an optimized asymmetric synthesis of 1,3-oxathiolan-5-ones 77 and 78 via dynamic covalent kinetic resolution using hemithioacetal chemistry coupled with a lipase-catalyzed cyclization (Scheme 25). Methyl thioglycolate (3j) was used in the reaction with aldehyde
PDF
Album
Review
Published 04 Nov 2021

Breakdown of 3-(allylsulfonio)propanoates in bacteria from the Roseobacter group yields garlic oil constituents

  • Anuj Kumar Chhalodia and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2021, 17, 569–580, doi:10.3762/bjoc.17.51

Graphical Abstract
  • ]. Compound 17 can be transformed into the coenzyme A thioester 18 by the CoA ligase DmdB, followed by FAD-dependent oxidation to the α,β-unsaturated compound 19 by DmdC. The attack of water to the Michael acceptor catalyzed by the enoyl-CoA hydratase DmdD yields the hemithioacetal 20 that spontaneously
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2021

β-Hydroxy sulfides and their syntheses

  • Mokgethwa B. Marakalala,
  • Edwin M. Mmutlane and
  • Henok H. Kinfe

Beilstein J. Org. Chem. 2018, 14, 1668–1692, doi:10.3762/bjoc.14.143

Graphical Abstract
  • , hemithioacetal, various thioesters, thiocarbamate and isothiocyanate. This review article focuses on β-hydroxy sulfides and analogs; their presence in natural products, general protocols for their synthesis, and examples of their application in target oriented synthesis. Keywords: alkene thiofunctionalization
  • , sulfide (acyclic or heterocyclic), disulfide, sulfoxide, sulfonate, thioaminal, hemithioacetal, various thioesters, thiocarbamate and isothiocyanate [3]. The three simplest sulfur-containing natural products are perhaps, (E)-2-butene-1-thiol (1), the principal ingredient of the repulsively malodorous
PDF
Album
Review
Published 05 Jul 2018

Synthesis of 1,2-cis-2-C-branched aryl-C-glucosides via desulfurization of carbohydrate based hemithioacetals

  • Henok H. Kinfe,
  • Fanuel M. Mebrahtu,
  • Mandlenkosi M. Manana,
  • Kagiso Madumo and
  • Mokela S. Sokamisa

Beilstein J. Org. Chem. 2015, 11, 583–588, doi:10.3762/bjoc.11.64

Graphical Abstract
  • stereospecific preparation of 2,3-unsaturated-aryl-C-glycosides (Ferrier products). Keywords: aryl-C-glucoside; desulfurization; Ferrier product; hemithioacetal; Introduction 1-C (C-glycosides) and 2-C-branched carbohydrates are important carbohydrate analogues which have found wide application in
  • substituents of the sugar moiety are locked in a 1,2-cis configuration in the thiochroman ring [16][17]. With our long standing on the chemical transformation of the thiochromans into important intermediates and biologically active compounds [16][17][18][19], it was noted that hemithioacetal 3 can be readily
  • hemithioacetal 3a (Scheme 1). During the deacetylation reaction the hemithioacetal 3a precipitated out of the methanol solution. Although most hemithioacetals (RCH(OH)SR’) are usually unstable and difficult to isolate as they dissociate to their corresponding aldehydes and thiols [22], hemithioacetal 3a was
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2015

Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria

  • Nelson L. Brock,
  • Christian A. Citron,
  • Claudia Zell,
  • Martine Berger,
  • Irene Wagner-Döbler,
  • Jörn Petersen,
  • Thorsten Brinkhoff,
  • Meinhard Simon and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2013, 9, 942–950, doi:10.3762/bjoc.9.108

Graphical Abstract
  • ][15] followed by its conversion into its CoA-thioester by DmdB and oxidation by the FAD-dependent dehydrogenase DmdC. The addition of water to 3-(methylthio)acryloyl-CoA by the enoyl-CoA hydratase DmdD results in a hemithioacetal, which collapses under release of acetaldehyde, carbon dioxide and MeSH
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2013

An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals

  • Marcus Baumann,
  • Ian R. Baxendale,
  • Steven V. Ley and
  • Nikzad Nikbin

Beilstein J. Org. Chem. 2011, 7, 442–495, doi:10.3762/bjoc.7.57

Graphical Abstract
  • involves the preparation of the sulfonyl chloride intermediate which is then trapped with the desired amine. The sulfonyl chloride can also be prepared from the corresponding hemithioacetal 61 by treatment with NCS in wet acetic acid (Scheme 12). This efficient oxidation produces only methanol and
PDF
Album
Review
Published 18 Apr 2011
Other Beilstein-Institut Open Science Activities