Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

Hussam M. Elnabawy, Juan Casanova-Chafer, Badawi Anis, Mostafa Fedawy, Mattia Scardamaglia, Carla Bittencourt, Ahmed S. G. Khalil, Eduard Llobet and Xavier Vilanova
Beilstein J. Nanotechnol. 2019, 10, 105–118. https://doi.org/10.3762/bjnano.10.10

Supporting Information

The supporting information features images of the effect of deposition technique on decorated carbon nanotubes, images of the wire bound sensor (both sides), images of the teflon gas sensing chamber, an image of the results from the first decoration method on carbon nanotubes, and a results showing the effect of the calcination period of the nanoparticle size.

Supporting Information File 1: Effect of deposition technique on decorated carbon nanotube morphology.
Format: PDF Size: 146.7 KB Download
Supporting Information File 2: Wire bonded sensor.
Format: PDF Size: 191.3 KB Download
Supporting Information File 3: Teflon gas sensing chamber allowing for 4 different sensors together for gas sensing.
Format: PDF Size: 204.8 KB Download
Supporting Information File 4: Effect of first decoration step on carbon nanotube morphology.
Format: PDF Size: 190.7 KB Download
Supporting Information File 5: Nanoparticle size distribution histograms.
Format: PDF Size: 262.7 KB Download

Cite the Following Article

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing
Hussam M. Elnabawy, Juan Casanova-Chafer, Badawi Anis, Mostafa Fedawy, Mattia Scardamaglia, Carla Bittencourt, Ahmed S. G. Khalil, Eduard Llobet and Xavier Vilanova
Beilstein J. Nanotechnol. 2019, 10, 105–118. https://doi.org/10.3762/bjnano.10.10

How to Cite

Elnabawy, H. M.; Casanova-Chafer, J.; Anis, B.; Fedawy, M.; Scardamaglia, M.; Bittencourt, C.; Khalil, A. S. G.; Llobet, E.; Vilanova, X. Beilstein J. Nanotechnol. 2019, 10, 105–118. doi:10.3762/bjnano.10.10

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 653.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mahmood, W. K.; Rashid, T. M.; Rahmah, M. I.; Jasim, A. M.; Fahem, M. Q.; Jabir, M. S.; Abid, D. A.; Majed, R. A.; Awaid, D. M.; Yosif, H. M. Empowering NO2 Detection: Synthesis of Highly Responsive Au/Cu-Doped Iron Oxide Nanoparticles as Gas Sensors Through Laser Ablation. Plasmonics 2024. doi:10.1007/s11468-024-02235-2
  • Muthu Meenakshi, M.; Annasamy, G.; Krishnan, S.; Hema Brindha, M.; Narasimhan, A. K. Engineered Magnetic Nanoparticles as Environmental Remediation Agents. Nanoparticles as Sustainable Environmental Remediation Agents; Royal Society of Chemistry, 2023; pp 163–192. doi:10.1039/bk9781837670215-00163
  • Mohamed, S. R.; Abdul-Aziz, M. R.; Saber, S.; Khabiri, G.; Khalil, A. S. Precise engineering of Fe3O4/MWCNTs heterostructures for high-performance supercapacitors. Journal of Alloys and Compounds 2023, 957, 170281. doi:10.1016/j.jallcom.2023.170281
  • Zhang, L.; Zhang, L.; Xue, J.; Yuan, H.; Zhou, C.; Guo, T.; Wang, L.; Fu, Z. Cobalt Species-Loaded MOFs as Chemiluminescent Catalysts for Monitoring Carbendazim. Langmuir : the ACS journal of surfaces and colloids 2023, 39, 12785–12792. doi:10.1021/acs.langmuir.3c01634
  • Miah, M. R.; Yang, M.; Khandaker, S.; Bashar, M. M.; Alsukaibi, A. K. D.; Hassan, H. M.; Znad, H.; Awual, M. R. Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review. Sensors and Actuators A: Physical 2022, 347, 113933. doi:10.1016/j.sna.2022.113933
  • Pebdeni, A. B.; Kudahi, S. N.; Hosseini, M. Environmental applications of luminescent metal nanoclusters. Luminescent Metal Nanoclusters; Elsevier, 2022; pp 465–491. doi:10.1016/b978-0-323-88657-4.00011-9
  • Su, P.-G.; Li, M.-C. Recognition of binary mixture of NO2 and NO gases using a chemiresistive sensors array combined with principal component analysis. Sensors and Actuators A: Physical 2021, 331, 112980. doi:10.1016/j.sna.2021.112980
  • Casanova-Chafer, J.; Acosta, S.; Bittencourt, C.; Llobet, E. Graphene-based gas sensors, working principles and sensing parameters. Graphene; Elsevier, 2021; pp 459–486. doi:10.1016/b978-0-08-102848-3.00009-8
  • Elnabawy, E.; ElSherbiny, I. M. A.; Abdelsamad, A. M.; Anis, B.; Hassan, A.; Ulbricht, M.; Khalil, A. S. G. Tailored CNTs Buckypaper Membranes for the Removal of Humic Acid and Separation of Oil-in-Water Emulsions. Membranes 2020, 10, 97. doi:10.3390/membranes10050097
  • Matus, E. V.; Khitsova, L. M.; Efimova, O. S.; Yashnik, S. A.; Shikina, N. V.; Ismagilov, Z. R. Preparation of Carbon Nanotubes with Supported Metal Oxide Nanoparticles: Effect of Metal Precursor on Thermal Decomposition Behavior of the Materials. Eurasian Chemico-Technological Journal 2019, 21, 303–316. doi:10.18321/ectj887
  • Freddi, S.; Drera, G.; Pagliara, S.; Goldoni, A.; Sangaletti, L. Enhanced selectivity of target gas molecules through a minimal array of gas sensors based on nanoparticle-decorated SWCNTs. The Analyst 2019, 144, 4100–4110. doi:10.1039/c9an00551j
Other Beilstein-Institut Open Science Activities