A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

Yongxin Lu, Yan Luo, Zehao Lin and Jianguo Huang
Beilstein J. Nanotechnol. 2019, 10, 1270–1279. https://doi.org/10.3762/bjnano.10.126

Supporting Information

FE-SEM micrographs of the paper-based SERS substrate Ag-NP/cellulose-NF–E; histograms of the silver nanoparticle size distribution and EDX spectra of the samples Ag-NP/cellulose-NF–A, –B, and –C; SERS spectra of R6G at different concentrations obtained by using substrate Ag-NP/cellulose-NF–E.

Supporting Information File 1: Additional figures.
Format: PDF Size: 663.3 KB Download

Cite the Following Article

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy
Yongxin Lu, Yan Luo, Zehao Lin and Jianguo Huang
Beilstein J. Nanotechnol. 2019, 10, 1270–1279. https://doi.org/10.3762/bjnano.10.126

How to Cite

Lu, Y.; Luo, Y.; Lin, Z.; Huang, J. Beilstein J. Nanotechnol. 2019, 10, 1270–1279. doi:10.3762/bjnano.10.126

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 2.5 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhuang, S.; Cheng, J.; Chen, S.; Li, Y.; Ding, D.; Yu, Z.; Xie, Y. Lotus leaf-inspired biomimetic SERS substrate for detection of thiram on apple. Food Bioscience 2024, 58, 103818. doi:10.1016/j.fbio.2024.103818
  • Morales-Cepeda, A. B.; Díaz-Guerrero, A. M.; Ledezma-Pérez, A. S.; Alvarado-Canché, C. N.; Rivera-Armenta, J. L. Bacterial cellulose from mother of vinegar loaded with silver nanoparticles as an effective antiseptic for wound-healing: antibacterial activity against Staphylococcus aureus and Escherichia coli. Chemical Papers 2024, 78, 3959–3969. doi:10.1007/s11696-024-03366-w
  • Zhang, H.; Ren, Q.; Lu, J.; Xu, Y.; Wang, Y.; Liu, S.; Pei, Y.; Luo, X. Simultaneous generation and immobilization of silver nanoparticles on cellulose membranes by hydrogen bond-assisted in-situ reaction for colorimetric detection of mercury ions and hydrogen peroxide. Chemical Engineering Journal 2023, 478, 147264. doi:10.1016/j.cej.2023.147264
  • Jerczynski, K.; Muszynska, J.; Demirci, G.; Cetinkaya, O.; Filipczak, P.; Nowaczyk, G.; Grobelny, J.; Matyjaszewski, K.; Kozanecki, M.; Pietrasik, J. Hybrid silver nanoparticles with controlled morphology as efficient substrates for surface-enhanced Raman scattering. Polymer 2023, 285, 126363. doi:10.1016/j.polymer.2023.126363
  • Fan, S.; Li, L.; Sun, K.; Zhang, T.; Wang, L.; Wang, Z. Fabrication of Superhydrophobic Hierarchical Structures on PET Surfaces by Hot Embossing with in Situ Growth of Silver Nanoparticles. In 2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), IEEE, 2023. doi:10.1109/3m-nano58613.2023.10305326
  • Lakkakula, J.; Divakaran, D.; Srivastava, R.; Ingle, P.; Gade, A.; Raut, R. In Situ Growth of Biocompatible Biogenic Silver Nanoparticles in Poly-Vinyl Alcohol Thin Film Matrix. IEEE transactions on nanobioscience 2023, 22, 480–486. doi:10.1109/tnb.2022.3208310
  • Maślana, K.; Kędzierski, T.; Żywicka, A.; Zielińska, B.; Mijowska, E. Design of self-cleaning and self-disinfecting paper-shaped photocatalysts based on wood and eucalyptus derived cellulose fibers modified with gCN/Ag nanoparticles. Environmental Nanotechnology, Monitoring & Management 2022, 17, 100656. doi:10.1016/j.enmm.2022.100656
  • Peng, P.; Zhao, C.; Ji, J.; Chen, W.; Ding, N.; Li, S.; Pang, S. Simple and selective method for simultaneous removal of mercury(ii) and recovery of silver(i) from aqueous media by organic ligand 4,4′-azo-1,2,4-triazole. Environmental Science: Water Research & Technology 2022, 8, 534–542. doi:10.1039/d1ew00651g
  • Lin, Z.; Huang, J. Biomimetic Nanoarchitectonics: Natural Cellulose Based Nanocomposites as High Performance Catalysts. Concepts and Design of Materials Nanoarchitectonics; The Royal Society of Chemistry, 2022; pp 63–81. doi:10.1039/9781788019613-00063
  • Marques, A. C.; Águas, H.; Martins, R.; Costa-Silva, B.; Sales, M. G. F.; Fortunato, E. Paper-based Analytical Devices for Chemical Analysis and Diagnostics - Surface-enhanced Raman scattering paper-based analytical devices. Paper-based Analytical Devices for Chemical Analysis and Diagnostics; Elsevier, 2022; pp 117–167. doi:10.1016/b978-0-12-820534-1.00001-3
  • Macrelli, A.; Villa, N. S.; Lucotti, A.; Dellasega, D.; Ossi, P. M.; Tommasini, M. Sensing the Anti-Epileptic Drug Perampanel with Paper-Based Spinning SERS Substrates. Molecules (Basel, Switzerland) 2021, 27, 30. doi:10.3390/molecules27010030
  • Fularz, A.; Almohammed, S.; Rice, J. H. SERS Enhancement of Porphyrin-Type Molecules on Metal-Free Cellulose-Based Substrates. ACS Sustainable Chemistry & Engineering 2021, 9, 16808–16819. doi:10.1021/acssuschemeng.1c06685
  • Xu, F.; Shang, W.; Xuan, M.; Ma, G.; Ben, Z. Layered filter paper-silver nanoparticle-ZIF-8 composite for efficient multi-mode enrichment and sensitive SERS detection of thiram. Chemosphere 2021, 288, 132635. doi:10.1016/j.chemosphere.2021.132635
  • Hussain, T.; Abbas, H.; Youn, C.; Lee, H. J.; Boynazarov, T.; Ku, B.; Jeon, Y. R.; Han, H.; Lee, J. H.; Choi, C. H.; Choi, T. Cellulose Nanocrystal Based Bio-Memristor as a Green Artificial Synaptic Device for Neuromorphic Computing Applications. Advanced Materials Technologies 2021, 7, 2100744. doi:10.1002/admt.202100744
  • Demirci, G.; Muszyńska, J.; Çetinkaya, O.; Filipczak, P.; Zhang, Y.; Nowaczyk, G.; Halagan, K.; Ulanski, J.; Matyjaszewski, K.; Pietrasik, J.; Kozanecki, M. Effective SERS materials by loading Ag nanoparticles into poly(acrylic acid-stat-acrylamide)-block-polystyrene nano-objects prepared by PISA. Polymer 2021, 224, 123747. doi:10.1016/j.polymer.2021.123747
  • Zhang, Q.; Jia, G.; Zhang, W.; Zhao, Z. Infrared plasma photothermal conversion of Cu2-xS/cellulose nanofilms prepared by sequential reaction. Results in Physics 2021, 22, 103942. doi:10.1016/j.rinp.2021.103942
  • Zhang, B.-T.; Liu, H.; Liu, Y.; Teng, Y. Application trends of nanofibers in analytical chemistry. TrAC Trends in Analytical Chemistry 2020, 131, 115992. doi:10.1016/j.trac.2020.115992
  • Nabeela, K.; Thomas, R. T.; Mohamed, A. A. P.; Pillai, S. Nanocellulose-silver ensembles for ultrasensitive SERS: An investigation on the role of nanocellulose fibers in the generation of high-density hotspots. Applied Materials Today 2020, 20, 100672. doi:10.1016/j.apmt.2020.100672
  • Ariga, K. Nanoarchitectonics: bottom-up creation of functional materials and systems. Beilstein journal of nanotechnology 2020, 11, 450–452. doi:10.3762/bjnano.11.36
Other Beilstein-Institut Open Science Activities