Nanoarchitectonics: bottom-up creation of functional materials and systems

  1. editorImage
  1. Editor: Prof. Katsuhiko Ariga
    WPI-MANA, National Institute for Materials Science (NIMS), Japan

A novel concept, nanoarchitectonics, has been recently proposed as a unified concept of nanotechnology and other scientific fields such as supramolecular chemistry to create functional materials and systems through a bottom-up process and nanotechnological knowledge. The core concept of nanoarchitectonics is based on the controlled arrangement of structural nanoscale units, such as atoms, molecules and assemblies, to create a new class of materials for modern and emerging technological applications. Especially, recent advances in making nanostructures with self-assembly processes and the construction of related nanostructures represent the most successful nanoarchitectonics.

Now is the right time to make a drastic paradigm shift from nanotechnology to nanoarchitectonics. This thematic issue covers new, technologically relevant, self-assembled nanoarchitectonics, which are chemically versatile and can assemble in solutions, at interfaces, or on surfaces into various, extended supramolecular structures. More complicated molecular organizations and a new class of materials consisting of organic/inorganic hybrid systems and bioconjugates of molecular assemblies may also be involved.

Please check back for more articles to be published soon.

To download all articles in this issue, click on the "Issue PDF" button to the right.

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  1. Eduardo Ruiz-Hitzky,
  2. Pilar Aranda,
  3. Marwa Akkari,
  4. Nithima Khaorapapong and
  5. Makoto Ogawa
  • Review
  • Published 31 May 2019

  • PDF

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

  • Full Research Paper
  • Published 24 Jun 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  1. Giulia Lo Dico,
  2. Bernd Wicklein,
  3. Lorenzo Lisuzzo,
  4. Giuseppe Lazzara,
  5. Pilar Aranda and
  6. Eduardo Ruiz-Hitzky
  • Full Research Paper
  • Published 25 Jun 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  1. Kai Xiao,
  2. Baris Kumru,
  3. Lu Chen,
  4. Lei Jiang,
  5. Bernhard V. K. J. Schmidt and
  6. Markus Antonietti
  • Full Research Paper
  • Published 27 Jun 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Janus-micromotor-based on–off luminescence sensor for active TNT detection

  1. Ye Yuan,
  2. Changyong Gao,
  3. Daolin Wang,
  4. Chang Zhou,
  5. Baohua Zhu and
  6. Qiang He
  • Full Research Paper
  • Published 28 Jun 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 1324–1331, doi:10.3762/bjnano.10.131

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  1. Florian Zoller,
  2. Jan Luxa,
  3. Thomas Bein,
  4. Dina Fattakhova-Rohlfing,
  5. Daniel Bouša and
  6. Zdeněk Sofer
  • Full Research Paper
  • Published 24 Jul 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

  • Full Research Paper
  • Published 05 Aug 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 1608–1617, doi:10.3762/bjnano.10.156

  • Full Research Paper
  • Published 09 Aug 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

  • Full Research Paper
  • Published 26 Aug 2019

  • PDF

Beilstein J. Nanotechnol. 2019, 10, 1778–1788, doi:10.3762/bjnano.10.173

Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints

  1. Elvira Rozhina,
  2. Ilnur Ishmukhametov,
  3. Svetlana Batasheva,
  4. Farida Akhatova and
  5. Rawil Fakhrullin
  • Letter
  • Published 04 Sep 2019

  • PDF

Beilstein J. Nanotechnol. 2019, 10, 1818–1825, doi:10.3762/bjnano.10.176

High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide

  1. Yongcai You,
  2. Ruirui Xing,
  3. Qianli Zou,
  4. Feng Shi and
  5. Xuehai Yan
  • Full Research Paper
  • Published 18 Sep 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 1894–1901, doi:10.3762/bjnano.10.184

Review of advanced sensor devices employing nanoarchitectonics concepts

  1. Katsuhiko Ariga,
  2. Tatsuyuki Makita,
  3. Masato Ito,
  4. Taizo Mori,
  5. Shun Watanabe and
  6. Jun Takeya
  • Review
  • Published 16 Oct 2019

  • PDF

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

  • Full Research Paper
  • Published 31 Oct 2019

  • PDF

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions

  1. Da Shi,
  2. Justine Wallyn,
  3. Dinh-Vu Nguyen,
  4. Francis Perton,
  5. Delphine Felder-Flesch,
  6. Sylvie Bégin-Colin,
  7. Mounir Maaloum and
  8. Marie Pierre Krafft
  • Full Research Paper
  • Published 31 Oct 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 2103–2115, doi:10.3762/bjnano.10.205

Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors

  1. Camila A. Proença,
  2. Tayane A. Freitas,
  3. Thaísa A. Baldo,
  4. Elsa M. Materón,
  5. Flávio M. Shimizu,
  6. Gabriella R. Ferreira,
  7. Frederico L. F. Soares,
  8. Ronaldo C. Faria and
  9. Osvaldo N. Oliveira Jr.
  • Full Research Paper
  • Published 06 Nov 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 2171–2181, doi:10.3762/bjnano.10.210

Keep Informed

RSS Feed

Subscribe to our Latest Articles RSS Feed.

Subscribe

Follow the Beilstein-Institut

LinkedIn

Twitter: @BeilsteinInst