Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells

Hannah Onafuye, Sebastian Pieper, Dennis Mulac, Jindrich Cinatl Jr., Mark N. Wass, Klaus Langer and Martin Michaelis
Beilstein J. Nanotechnol. 2019, 10, 1707–1715. https://doi.org/10.3762/bjnano.10.166

Supporting Information

Doxorubicin IC50s in neuroblastoma cells in the absence or presence of the ABCB1 inhibitor zosuquidar. Effects of doxorubicin applied as solution or incorporated into HSA nanoparticles on neuroblastoma cell viability. Effects of doxorubicin solution or doxorubicin HSA nanoparticles on neuroblastoma cells with or without zosuquidar.

Supporting Information File 1: Additional experimental details.
Format: PDF Size: 69.4 KB Download

Cite the Following Article

Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells
Hannah Onafuye, Sebastian Pieper, Dennis Mulac, Jindrich Cinatl Jr., Mark N. Wass, Klaus Langer and Martin Michaelis
Beilstein J. Nanotechnol. 2019, 10, 1707–1715. https://doi.org/10.3762/bjnano.10.166

How to Cite

Onafuye, H.; Pieper, S.; Mulac, D.; Jr., J. C.; Wass, M. N.; Langer, K.; Michaelis, M. Beilstein J. Nanotechnol. 2019, 10, 1707–1715. doi:10.3762/bjnano.10.166

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 880.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Grimsley, H. E.; Antczak, M.; McLaughlin, K.-M.; Nist, A.; Mernberger, M.; Stiewe, T.; Speidel, D.; Harper-Wynne, C.; Cox, K.; Cinatl, J.; Wass, M.; Garrett, M. D.; Michaelis, M. Resistance patterns in drug-adapted cancer cell lines reflect complex evolution in clinical tumors. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.01.20.576412
  • Verma, R.; Akter, R.; Kumar, M.; Bhatt, S.; Tiwari, A.; Tiwari, V.; Tagde, P.; Pandey, P.; Mittal, V.; Purohit, D.; Redhu, R.; Rahman, M. H.; Kaushik, D. Exploring the Role of Nanotherapeutics for Diagnosis and Treatment of Solid Tumor. Current Nanoscience 2024, 20, 109–129. doi:10.2174/1573413719666230110124509
  • Patel, R.; Kuwar, U.; Dhote, N.; Alexander, A.; Nakhate, K.; Jain, P.; Ajazuddin. Natural Polymers as a Carrier for the Effective Delivery of Antineoplastic Drugs. Current drug delivery 2024, 21, 193–210. doi:10.2174/1567201820666230112170035
  • Babunagappan, K. V.; Seetharaman, A.; Ariraman, S.; Santhosh, P. B.; Genova, J.; Ulrih, N. P.; Sudhakar, S. Doxorubicin loaded thermostable nanoarchaeosomes: a next-generation drug carrier for breast cancer therapeutics. Nanoscale Advances 2024. doi:10.1039/d3na00953j
  • Lee, J.; Choi, M.-K.; Song, I.-S. Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting. Pharmaceuticals (Basel, Switzerland) 2023, 16, 802. doi:10.3390/ph16060802
  • Sandha, K. K.; Behera, C.; Chibber, P.; Kumar, R.; Kumar, A.; Mondhe, D. M.; Singh, G.; Gupta, P. N. Antifibrotic Agent Mediated Tumor Microenvironment Modulation and Improved Nanomedicine Delivery in Solid Tumor. Molecular pharmaceutics 2023, 20, 2927–2941. doi:10.1021/acs.molpharmaceut.2c01081
  • Kulkarni, S. Natural Polymers-Based Nanoparticles Targeted to Solid Tumors. Environmental Chemistry for a Sustainable World; Springer International Publishing, 2022; pp 75–102. doi:10.1007/978-3-031-14848-4_3
  • Paul, M.; Itoo, A. M.; Ghosh, B.; Biswas, S. Current trends in the use of human serum albumin for drug delivery in cancer. Expert opinion on drug delivery 2022, 19, 1449–1470. doi:10.1080/17425247.2022.2134341
  • Sharma, P.; Hasan, M. R.; Narang, J. Bio-inspired Protein-Based Nanoparticles in Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects; Springer Nature Singapore, 2022; pp 2917–2939. doi:10.1007/978-981-16-5422-0_130
  • Sarkar, M.; Wang, Y.; Ekpenyong, O.; Liang, D.; Xie, H. Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2022, 15, e1846. doi:10.1002/wnan.1846
  • Kulig, K.; Ziąbka, M.; Pilarczyk, K.; Owczarzy, A.; Rogóż, W.; Maciążek-Jurczyk, M. Physicochemical Study of Albumin Nanoparticles with Chlorambucil. Processes 2022, 10, 1170. doi:10.3390/pr10061170
  • Sharma, P.; Hasan, M. R.; Narang, J. Bio-inspired Protein-Based Nanoparticles in Cancer Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects; Springer Singapore, 2022; pp 1–24. doi:10.1007/978-981-16-1247-3_130-1
  • Sozer, S. C.; Akdogan, Y. Characterization of Water Solubility and Binding of Spin Labeled Drugs in the Presence of Albumin Nanoparticles and Proteins by Electron Paramagnetic Resonance Spectroscopy. ChemistrySelect 2022, 7. doi:10.1002/slct.202103890
  • Yu, L.; Hua, Z.; Luo, X.; Zhao, T.; Liu, Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochimica et biophysica acta. Reviews on cancer 2021, 1877, 188655. doi:10.1016/j.bbcan.2021.188655
  • Niculescu, A.-G.; Grumezescu, A. M. Polymer-Based Nanosystems-A Versatile Delivery Approach. Materials (Basel, Switzerland) 2021, 14, 6812. doi:10.3390/ma14226812
  • Bojkova, D.; Costa, R.; Bechtel, M.; Ciesek, S.; Michaelis, M.; Cinatl, J. Targeting pentose phosphate pathway for SARS-CoV-2 therapy. Metabolites 2021, 11, 699. doi:10.3390/metabo11100699
  • Rothenburger, T.; Thomas, D.; Schreiber, Y.; Wratil, P. R.; Pflantz, T.; Knecht, K. M.; Digianantonio, K.; Temple, J.; Schneider, C.; Baldauf, H.-M.; McLaughlin, K.-M.; Rothweiler, F.; Bilen, B.; Farmand, S.; Bojkova, D.; Costa, R.; Ferreirós, N.; Geisslinger, G.; Oellerich, T.; Xiong, Y.; Keppler, O. T.; Wass, M. N.; Michaelis, M.; Cinatl, J. Differences between intrinsic and acquired nucleoside analogue resistance in acute myeloid leukaemia cells. Journal of experimental & clinical cancer research : CR 2021, 40, 317. doi:10.1186/s13046-021-02093-4
  • Kudłacik-Kramarczyk, S.; Głąb, M.; Drabczyk, A.; Kordyka, A.; Godzierz, M.; Wrobel, P. S.; Krzan, M.; Uthayakumar, M.; Kędzierska, M.; Tyliszczak, B. Physicochemical Characteristics of Chitosan-Based Hydrogels Containing Albumin Particles and Aloe vera Juice as Transdermal Systems Functionalized in the Viewpoint of Potential Biomedical Applications. Materials (Basel, Switzerland) 2021, 14, 5832. doi:10.3390/ma14195832
  • Kudłacik-Kramarczyk, S.; Drabczyk, A.; Głąb, M.; Gajda, P.; Czopek, A.; Zagórska, A.; Jaromin, A.; Gubernator, J.; Makara, A.; Tyliszczak, B. The Development of the Innovative Synthesis Methodology of Albumin Nanoparticles Supported by Their Physicochemical, Cytotoxic and Hemolytic Evaluation. Materials (Basel, Switzerland) 2021, 14, 4386. doi:10.3390/ma14164386
  • Rothenburger, T.; Thomas, D.; Schreiber, Y.; Wratil, P. R.; Pflantz, T.; Knecht, K. M.; Digianantonio, K.; Temple, J.; Schneider, C.; Baldauf, H.-M.; McLaughlin, K.-M.; Rothweiler, F.; Bilen, B.; Farmand, S.; Bojkova, D.; Costa, R.; Ferreirós, N.; Geisslinger, G.; Oellerich, T.; Xiong, Y.; Keppler, O. T.; Wass, M. N.; Michaelis, M.; Cinatl, J. Differences between intrinsic and acquired nucleoside analogue resistance in acute myeloid leukaemia cells. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.07.19.452885
Other Beilstein-Institut Open Science Activities