Supporting Information
| Supporting Information File 1: Experimental section and additional figures. | ||
| Format: PDF | Size: 760.7 KB | Download |
Cite the Following Article
High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide
Yongcai You, Ruirui Xing, Qianli Zou, Feng Shi and Xuehai Yan
Beilstein J. Nanotechnol. 2019, 10, 1894–1901.
https://doi.org/10.3762/bjnano.10.184
How to Cite
You, Y.; Xing, R.; Zou, Q.; Shi, F.; Yan, X. Beilstein J. Nanotechnol. 2019, 10, 1894–1901. doi:10.3762/bjnano.10.184
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 660.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Patel, K. D.; Lamarra, K. A.; Sawadkar, P.; Ludwig, A.; Perriman, A. W. Silk Fibroin/GelMA-Based Hydrogels as a Platform for Tissue Adhesives and Tissue Engineering. ACS biomaterials science & engineering 2025, 11, 3893–3931. doi:10.1021/acsbiomaterials.5c00286
- Shintani, Y.; Higashi, S. L.; Shibata, A.; Hirosawa, K. M.; Suzuki, K. G. N.; Kawano, S.-i.; Katagiri, H.; Ikeda, M. Modulable Supramolecular Hydrogels via Co-Assembly Using Cyclic Dipeptides: Influence of One Methyl Group. Chemistry of Materials 2025, 37, 2241–2250. doi:10.1021/acs.chemmater.4c03245
- An, L.; Wang, S.; Liao, B.; Liu, J.; Jin, X.; Cai, Y.; Li, Z.; Li, Y.; Ma, J.; Li, J. Living organisms growth and release immobilized in an assembled dipeptide hydrogel. Journal of colloid and interface science 2025, 686, 462–470. doi:10.1016/j.jcis.2025.01.217
- Sreena, R.; Ebinesh, S.; Angel, S. S.; Nathanael, A. J. Hydrogels for bone regeneration. Hydrogel Tissue Analogues; Elsevier, 2025; pp 191–218. doi:10.1016/b978-0-443-29260-6.00014-7
- Esmaeili, J.; Ghoraishizadeh, S.; Farzan, M.; Barati, A.; Salehi, E.; Ai, J. Fabrication and Evaluation of a Soy Protein Isolate/Collagen/Sodium Alginate Multifunctional Bilayered Wound Dressing: Release of Cinnamaldehyde, Artemisia absinthium, and Oxygen. ACS applied bio materials 2024, 7, 5470–5482. doi:10.1021/acsabm.4c00611
- Varghese, R.; Bharat Dalvi, Y.; Lochana, P.; Achinthya, S.; Omprakash Somani, B.; Karnaver, P.; George Thomas, N.; Rupesh, S.; Varghese, N.; V.P., J. Physiochemical and Biomedical Properties of Hydrogels: From Fundamentals to Applications. Hydrogels and Nanogels - Applications in Medicine; IntechOpen, 2024. doi:10.5772/intechopen.1002027
- Witkowski, M.; Trzybiński, D.; Pawlędzio, S.; Woźniak, K.; Dzwolak, W.; Królikowska, A. The Structural Characterisation and DFT-Aided Interpretation of Vibrational Spectra for Cyclo(l-Cys-d-Cys) Cyclic Dipeptide in a Solid State. Molecules (Basel, Switzerland) 2023, 28, 5902. doi:10.3390/molecules28155902
- Santos, D.; Baptista, R. M. F.; Handa, A.; Almeida, B.; Rodrigues, P. V.; Castro, C.; Machado, A.; Rodrigues, M. J. L. F.; Belsley, M.; de Matos Gomes, E. Nanostructured Electrospun Fibers with Self-Assembled Cyclo-L-Tryptophan-L-Tyrosine Dipeptide as Piezoelectric Materials and Optical Second Harmonic Generators. Materials (Basel, Switzerland) 2023, 16, 4993. doi:10.3390/ma16144993
- Younas, F.; Zaman, M.; Aman, W.; Farooq, U.; Raja, M. A. G.; Amjad, M. W. Thiolated Polymeric Hydrogels for Biomedical Applications: A Review. Current pharmaceutical design 2023, 29, 3172–3186. doi:10.2174/1381612829666230825100859
- Zhou, P.; Yuan, C.; Yan, X. Computational approaches for understanding and predicting the self-assembled peptide hydrogels. Current Opinion in Colloid & Interface Science 2022, 62, 101645. doi:10.1016/j.cocis.2022.101645
- Revete, A.; Aparicio, A.; Cisterna, B. A.; Revete, J.; Luis, L.; Ibarra, E.; Segura González, E. A.; Molino, J.; Reginensi, D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. International journal of biomaterials 2022, 2022, 3606765–16. doi:10.1155/2022/3606765
- Rosetti, B.; Scarel, E.; Colomina-Alfaro, L.; Adorinni, S.; Pierri, G.; Bellotto, O.; Mamprin, K.; Polentarutti, M.; Bandiera, A.; Tedesco, C.; Marchesan, S. Self-Assembly of Homo- and Hetero-Chiral Cyclodipeptides into Supramolecular Polymers towards Antimicrobial Gels. Polymers 2022, 14, 4554. doi:10.3390/polym14214554
- Pramanik, B. Short Peptide-Based Smart Thixotropic Hydrogels. Gels (Basel, Switzerland) 2022, 8, 569. doi:10.3390/gels8090569
- Ghosh, S.; Nag, S.; Saha, K. D.; Banerji, B. S-Benzyl cysteine based cyclic dipeptide super hydrogelator: Enhancing efficacy of an anticancer drug via sustainable release. Journal of peptide science : an official publication of the European Peptide Society 2022, 28, e3403. doi:10.1002/psc.3403
- Bojarska, J.; Mieczkowski, A.; Ziora, Z. M.; Skwarczynski, M.; Toth, I.; Shalash, A. O.; Parang, K.; El-Mowafi, S. A.; Mohammed, E. H. M.; Elnagdy, S. M.; AlKhazindar, M.; Wolf, W. M. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021, 11, 1515. doi:10.3390/biom11101515
- Denzer, B. R.; Kulchar, R. J.; Huang, R. B.; Patterson, J. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels (Basel, Switzerland) 2021, 7, 158. doi:10.3390/gels7040158
- Scarel, M.; Marchesan, S. Diketopiperazine Gels: New Horizons from the Self-Assembly of Cyclic Dipeptides. Molecules (Basel, Switzerland) 2021, 26, 3376. doi:10.3390/molecules26113376
- Zhao, K.; Xing, R.; Yan, X. Cyclic dipeptides: Biological activities and self‐assembled materials. Peptide Science 2020, 113. doi:10.1002/pep2.24202
- Marchesana, S.; Kurbasic, M.; Parisi, E.; Garcia, A. M. Self-Assembling, Ultrashort Peptide Gels as Antimicrobial Biomaterials. Current topics in medicinal chemistry 2020, 20, 1300–1309. doi:10.2174/1568026620666200316150221
- Ariga, K. Nanoarchitectonics: bottom-up creation of functional materials and systems. Beilstein journal of nanotechnology 2020, 11, 450–452. doi:10.3762/bjnano.11.36