Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery

Dávid Juriga, Evelin Sipos, Orsolya Hegedűs, Gábor Varga, Miklós Zrínyi, Krisztina S. Nagy and Angéla Jedlovszky-Hajdú
Beilstein J. Nanotechnol. 2019, 10, 2579–2593. https://doi.org/10.3762/bjnano.10.249

Supporting Information

Supporting Information File 1: Additional experimental information.
Format: PDF Size: 373.4 KB Download

Cite the Following Article

Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery
Dávid Juriga, Evelin Sipos, Orsolya Hegedűs, Gábor Varga, Miklós Zrínyi, Krisztina S. Nagy and Angéla Jedlovszky-Hajdú
Beilstein J. Nanotechnol. 2019, 10, 2579–2593. https://doi.org/10.3762/bjnano.10.249

How to Cite

Juriga, D.; Sipos, E.; Hegedűs, O.; Varga, G.; Zrínyi, M.; Nagy, K. S.; Jedlovszky-Hajdú, A. Beilstein J. Nanotechnol. 2019, 10, 2579–2593. doi:10.3762/bjnano.10.249

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 902.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Hafidi, Y.; El Hatka, H.; Schmitz, D.; Krauss, M.; Pettrak, J.; Biel, M.; Ittobane, N. Sustainable Soil Additives for Water and Micronutrient Supply: Swelling and Chelating Properties of Polyaspartic Acid Hydrogels Utilizing Newly Developed Crosslinkers. Gels (Basel, Switzerland) 2024, 10, 170. doi:10.3390/gels10030170
  • De Grave, L.; Bernaerts, K. V.; Van Vlierberghe, S. Chemical functionalization strategies for poly(aspartic acid) towards crosslinking and processing capabilities. Polymer 2024, 294, 126723. doi:10.1016/j.polymer.2024.126723
  • Kamaraj, S.; Vuppu, S. Recent Review on the Extraction and Qualitative Assay of Cysteine and Other Amino Acids from Vellore Feather Waste and Molecular Docking Studies of Cysteine for Pharmacological Applications. Molecular biotechnology 2023. doi:10.1007/s12033-023-00862-4
  • Kumar, D.; Sahu, B.; Banerjee, S. Amino Acid‐Derived Smart and Functional Polymers for Biomedical Applications: Current Status and Future Perspectives. Macromolecular Chemistry and Physics 2023, 224. doi:10.1002/macp.202300207
  • Tiwari, O. S.; Rencus-Lazar, S.; Gazit, E. Peptide- and Metabolite-Based Hydrogels: Minimalistic Approach for the Identification and Characterization of Gelating Building Blocks. International journal of molecular sciences 2023, 24, 10330. doi:10.3390/ijms241210330
  • Yang, K.; Zhao, X.; Wei, W.; Lin, C. X.; Sun, L.; Wei, Z.; Huang, Q.; Ge, X.; Zrínyi, M.; Chen, Y. M. A novel injectable and self-biodegradable poly(aspartic acid) hydrogel. Materials & Design 2023, 226, 111662. doi:10.1016/j.matdes.2023.111662
  • Molnar, K.; Krisch, E.; Puskas, J. E. Polysuccinimide and Polyaspartamide for Functional Fibers: Synthesis, Characterization, and Properties. Electrospun Nanofibers; Springer International Publishing, 2022; pp 135–155. doi:10.1007/978-3-030-99958-2_6
  • Juriga, D.; Kalman, E. E.; Toth, K.; Barczikai, D.; Szöllősi, D.; Földes, A.; Varga, G.; Zrinyi, M.; Jedlovszky-Hajdu, A.; Nagy, K. S. Analysis of Three-Dimensional Cell Migration in Dopamine-Modified Poly(aspartic acid)-Based Hydrogels. Gels (Basel, Switzerland) 2022, 8, 65. doi:10.3390/gels8020065
  • Földes, A.; Reider, H.; Varga, A.; Nagy, K.; Perczel-Kovách, K.; Kis-Petik, K.; DenBesten, P.; Ballagi, A.; Varga, G. Culturing and Scaling up Stem Cells of Dental Pulp Origin Using Microcarriers. Polymers 2021, 13, 3951. doi:10.3390/polym13223951
  • Gupta, S. S.; Mishra, V.; Mukherjee, M. D.; Saini, P.; Ranjan, K. R. Amino acid derived biopolymers: Recent advances and biomedical applications. International journal of biological macromolecules 2021, 188, 542–567. doi:10.1016/j.ijbiomac.2021.08.036
  • Yang, X.; Baolong, W.; Di, S.; Liu, Y.; Liu, Z.; Shi, K.; Liu, W.; Yu, C.; Ji, X. PVA/Poly(hexamethylene guanidine)/Gallic Acid Composite Hydrogel Films and Their Antibacterial Performance. ACS Applied Polymer Materials 2021, 3, 3867–3877. doi:10.1021/acsapm.1c00447
  • Adelnia, H.; Tran, H. D.; Little, P. J.; Blakey, I.; Ta, H. T. Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications. ACS biomaterials science & engineering 2021, 7, 2083–2105. doi:10.1021/acsbiomaterials.1c00150
  • Strätz, J.; Fischer, S. Tailored covalently cross-linked hydrogels based on oxidized cellulose sulfate and carboxymethyl chitosan by targeted adjustment of the storage modulus. Cellulose 2020, 27, 7535–7542. doi:10.1007/s10570-020-03279-3
  • Voniatis, C.; Balsevicius, L.; Barczikai, D.; Juriga, D.; Takács, A.; Kőhidai, L.; Nagy, K.; Jedlovszky-Hajdu, A. Co-electrospun polysuccinimide/poly(vinyl alcohol) composite meshes for tissue engineering. Journal of Molecular Liquids 2020, 306, 112895. doi:10.1016/j.molliq.2020.112895
Other Beilstein-Institut Open Science Activities