Cite the Following Article
Effects of post-lithography cleaning on the yield and performance of CVD graphene-based devices
Eduardo Nery Duarte de Araujo, Thiago Alonso Stephan Lacerda de Sousa, Luciano de Moura Guimarães and Flavio Plentz
Beilstein J. Nanotechnol. 2019, 10, 349–355.
https://doi.org/10.3762/bjnano.10.34
How to Cite
de Araujo, E. N. D.; de Sousa, T. A. S. L.; de Moura Guimarães, L.; Plentz, F. Beilstein J. Nanotechnol. 2019, 10, 349–355. doi:10.3762/bjnano.10.34
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 744.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Mariano, D. G.; Bastos, F. D.; de Oliveira Mota, H.; Costa, J. G.; Torres, V. Â. M. F.; de Sousa Lacerda, C. M.; Plentz, F. A Stimulation and Measurement System for the Characterization of Graphene FET Biosensors. In 2024 8th International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT), IEEE, 2024; pp 1–5. doi:10.1109/inscit62583.2024.10693379
- Sousa, T. A. S. L.; Almeida, N. B. F.; Santos, F. A.; Filgueiras, P. S.; Corsini, C. A.; Lacerda, C. M. S.; Silva, T. G.; Grenfell, R. F. Q.; Plentz, F. Ultrafast and highly sensitive detection of SARS-CoV-2 spike protein by field-effect transistor graphene-based biosensors. Nanotechnology 2024, 35, 425503. doi:10.1088/1361-6528/ad67e8
- Almeida, N. B. F.; Sousa, T. A. S. L.; Santos, V. C. F.; Lacerda, C. M. S.; Silva, T. G.; Grenfell, R. F. Q.; Plentz, F.; Andrade, A. S. R. DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection. Beilstein journal of nanotechnology 2022, 13, 873–881. doi:10.3762/bjnano.13.78
- Kumar, P.; Saheed, M. S. M.; Ling, H. C.; Thulasiraman, S. a.; Gupta, M.; Norhakim, N.; Hawari, H. F.; Burhanudin, Z. A. Surface-treatment process related sheet resistance variations in graphene-based thin-film electrodes. Surfaces and Interfaces 2022, 32, 102161. doi:10.1016/j.surfin.2022.102161
- Tyagi, A.; Mišeikis, V.; Martini, L.; Forti, S.; Mishra, N.; Gebeyehu, Z. M.; Giambra, M. A.; Zribi, J.; Frégnaux, M.; Aureau, D.; Romagnoli, M.; Beltram, F.; Coletti, C. Ultra-clean high-mobility graphene on technologically relevant substrates. Nanoscale 2022, 14, 2167–2176. doi:10.1039/d1nr05904a
- de Sousa, T. A. S. L.; dos Santos, V. C. F.; Almeida, N. B. F.; dos Santos, F. A.; da Silva, T. R. G.; de Araújo, E. N. D.; de Andrade, A. S. R.; Plentz, F. Surface Modifications in Graphene by DNA Aptamers for Staphylococcus Aureus Detection. IEEE Sensors Journal 2021, 21, 26534–26541. doi:10.1109/jsen.2021.3122272
- de Sousa, T. A. S. L.; dos Santos, F. A.; da Silva, T. R. G.; de Araújo, E. N. D.; Plentz, F. Surface modification of graphene with thionine: Formation of p-n junctions. Applied Surface Science 2020, 530, 147003. doi:10.1016/j.apsusc.2020.147003
- Kumar, N.; Navani, N. K.; Manhas, S. K. Fabrication and Characterization of Carbon Nanotube Microdevices for CO 2 Gas Sensing and Other Applications. In 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE, 2019; pp 1–6. doi:10.1109/upcon47278.2019.8980140