An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

Mamta Sham Lal, Thirugnanam Lavanya and Sundara Ramaprabhu
Beilstein J. Nanotechnol. 2019, 10, 781–793. https://doi.org/10.3762/bjnano.10.78

Supporting Information

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 513.3 KB Download

Cite the Following Article

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite
Mamta Sham Lal, Thirugnanam Lavanya and Sundara Ramaprabhu
Beilstein J. Nanotechnol. 2019, 10, 781–793. https://doi.org/10.3762/bjnano.10.78

How to Cite

Sham Lal, M.; Lavanya, T.; Ramaprabhu, S. Beilstein J. Nanotechnol. 2019, 10, 781–793. doi:10.3762/bjnano.10.78

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 616.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kenawy, E.-R.; Moharram, Y. I.; Abouharga, F. S.; Elfiky, M. Electrospun network based on polyacrylonitrile-polyphenyl/titanium oxide nanofibers for high-performance supercapacitor device. Scientific reports 2024, 14, 6683. doi:10.1038/s41598-024-56545-w
  • Anikpa, P.; Mee, A.; Nwanya, A.; Nkele, A. C.; Malavekar, D.; Osuji, R.; Nwulu, N.; Lokhande, C.; Ezema, F. I. Asymmetric supercapacitor performance of hydrothermally-synthesized MWCNT-WO3 composite electrode. Journal of Energy Storage 2024, 81, 110439. doi:10.1016/j.est.2024.110439
  • Li, S.; Li, S.; Wang, Y.; Tang, C.; Qiu, L.; Yu, S. Selective Oxidation of Glycerol to Lactic Acid Catalyzed by CuO/Activated Carbon and Reaction Kinetics. ACS omega 2024, 9, 10583–10591. doi:10.1021/acsomega.3c08845
  • Patil, T. S.; Kamble, R. S.; Patil, R. B.; Takale, M. V.; Gangawane, S. A. Enhanced supercapacitive performance of electrophoretically deposited nanostructured molybdenum-doped Mn3O4 thin films. International Journal of Materials Research 2023, 115, 47–58. doi:10.1515/ijmr-2022-0414
  • Al Ghamdi, S. D.; Alzahrani, A. O. M.; Sobahi, N.; Aida, M. S.; Abdel-Wahab, M. S. Electrical properties of CuO/ZnO heterojunctions prepared by spray pyrolysis. Semiconductor Science and Technology 2023, 38, 85009–085009. doi:10.1088/1361-6641/acdb95
  • Jha, S.; Akula, B.; Boddu, P.; Novak, M.; Enyioma, H.; Cherradi, R.; Liang, H. Roles of molecular structure of carbon-based materials in energy storage. Materials Today Sustainability 2023, 22, 100375. doi:10.1016/j.mtsust.2023.100375
  • Chebil, A.; Dridi, C. Nanomaterials for supercapacitors. Smart Supercapacitors; Elsevier, 2023; pp 255–274. doi:10.1016/b978-0-323-90530-5.00030-7
  • Saleem, M.; Albaqami, M. D.; Bahajjaj, A. A. A.; Ahmed, F.; Din, E.; Arifeen, W. U.; Ali, S. Wet-Chemical Synthesis of TiO2/PVDF Membrane for Energy Applications. Molecules (Basel, Switzerland) 2022, 28, 285. doi:10.3390/molecules28010285
  • Pascariu, P.; Homocianu, M.; Vacareanu, L.; Asandulesa, M. Multi-Functional Materials Based on Cu-Doped TiO2 Ceramic Fibers with Enhanced Pseudocapacitive Performances and Their Dielectric Characteristics. Polymers 2022, 14, 4739. doi:10.3390/polym14214739
  • Lal, M. S.; Sundara, R. Electrospun porous carbon nanofibers/TiO2 composite coated over carbon cloth- A flexible electrode for capacitive deionization. Ceramics International 2022, 48, 20351–20361. doi:10.1016/j.ceramint.2022.03.319
  • Suganya, M.; Kishor Kumar, J.; Anand, S.; Mohamed Racik, K.; Muthupandi, S.; Muniyappan, S.; Nandhini, S. Synthesis and electrochemical investigation of Z-type barium hexaferrite nanoplatelets. Inorganic Chemistry Communications 2022, 139, 109412. doi:10.1016/j.inoche.2022.109412
  • Piotrowski, P.; Fedorczyk, A.; Grebowski, J.; Krogul-Sobczak, A. Functionalization of Graphene by π–π Stacking with C60/C70/Sc3N@C80 Fullerene Derivatives for Supercapacitor Electrode Materials. 2022, 8, 17. doi:10.3390/c8010017
  • Lal, M. S.; Ramaprabhu, S. High Areal Capacitance of Flexible Supercapacitors Fabricated with Carbon Cloth-Carbon Fiber-TiO2 Electrodes and Different Hydrogel Polymer Electrolytes. Journal of The Electrochemical Society 2022, 169, 20514–020514. doi:10.1149/1945-7111/ac4d6a
  • Suganya, M.; Kumar, J. K.; Anand, S.; Racik, K. M.; Muthupandi, S.; Muniyappan, S. Electrochemical Studies of Novel X-Type Barium Hexaferrite Nanoplatelets for Supercapacitor Applications. Journal of Superconductivity and Novel Magnetism 2022, 35, 915–923. doi:10.1007/s10948-021-06138-9
  • Tian, D.; Wang, C.; Lu, X. Metal Oxide-Based Nanofibers and Their Applications - Supercapacitors based on electrospun metal oxide nanofibers. Metal Oxide-Based Nanofibers and Their Applications; Elsevier, 2022; pp 361–393. doi:10.1016/b978-0-12-820629-4.00012-6
  • Subudhi, D. K.; Mishra, D. K.; Achary, P.; Ramana, C. Supercapacitors: a review on electrode materials and models based on conjugated polymers. Conjugated Polymers for Next-Generation Applications; Elsevier, 2022; pp 335–365. doi:10.1016/b978-0-12-824094-6.00013-3
  • Rajak, R.; Saraf, M.; Kumar, P.; Natarajan, K.; Mobin, M. Construction of a Cu-Based Metal-Organic Framework by Employing a Mixed-Ligand Strategy and Its Facile Conversion into Nanofibrous CuO for Electrochemical Energy Storage Applications. Inorganic chemistry 2021, 60, 16986–16995. doi:10.1021/acs.inorgchem.1c02062
  • Lal, M. S.; Badam, R.; Matsumi, N.; Ramaprabhu, S. Hydrothermal synthesis of single-walled carbon nanotubes/TiO2 for quasi-solid-state composite-type symmetric hybrid supercapacitors. Journal of Energy Storage 2021, 40, 102794. doi:10.1016/j.est.2021.102794
  • Saliu, O. D.; Mamo, M. A.; Ndungu, P.; Ramontja, J. The making of a high performance supercapacitor active at negative potential using sulphonic acid activated starch-gelatin-TiO2 nano-hybrids. Arabian Journal of Chemistry 2021, 14, 103242. doi:10.1016/j.arabjc.2021.103242
  • Sawadsitang, S.; Duangchuen, T.; Karaphun, A.; Putjuso, T.; Kumnorkaew, P.; Swatsitang, E. Synthesis, characterization and electrochemical properties of activated coconut fiber carbon (ACFC) and CuO/ACFC nanocomposites for applying as electrodes of supercapacitor devices. Surfaces and Interfaces 2021, 25, 101174. doi:10.1016/j.surfin.2021.101174
Other Beilstein-Institut Open Science Activities