Cite the Following Article
Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces
Yunlu Pan, Wenting Kong, Bharat Bhushan and Xuezeng Zhao
Beilstein J. Nanotechnol. 2019, 10, 866–873.
https://doi.org/10.3762/bjnano.10.87
How to Cite
Pan, Y.; Kong, W.; Bhushan, B.; Zhao, X. Beilstein J. Nanotechnol. 2019, 10, 866–873. doi:10.3762/bjnano.10.87
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 650.2 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Černoga, A.; Djaniš, J. P.; Lisjak, D.; Iskra, J.; Prinčič, G. Simple and fast wettability control of aminosilanized surfaces with carboxylic acids. Surfaces and Interfaces 2025, 76, 107906. doi:10.1016/j.surfin.2025.107906
- Kang, T.; Yang, L.; Yang, Y.; Jiang, H.; Jiang, Y.; Zhang, H. Preparation and Research on Superhydrophobic/Superhydrophilic Switchable Porous Epoxy Resin Composite Membrane. Journal of Applied Polymer Science 2025. doi:10.1002/app.57927
- Gao, R.; Wang, X.; Pang, K. Nonlinear Correction of Graphene Oxide Humidity Sensor. Lecture Notes in Electrical Engineering; Springer Nature Singapore, 2025; pp 642–648. doi:10.1007/978-981-96-1383-0_67
- Wang, J.; Li, F.; Pan, Y.; Chen, F.; Huang, C.; Zhao, X. Robust photopolymerized superoleophobic/superhydrophilic mesh for oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 701, 134892. doi:10.1016/j.colsurfa.2024.134892
- Bhushan, B. Adaptable Fabrication Techniques for Mechanically Durable Superliquiphobic/Philic Surfaces. Introduction to Biomimetics and Bioinspiration; Springer Nature Switzerland, 2024; pp 291–396. doi:10.1007/978-3-031-62344-8_9
- Bhushan, B. Nanofabrication Techniques Used for Superhydrophobic Surfaces. Introduction to Biomimetics and Bioinspiration; Springer Nature Switzerland, 2024; pp 111–122. doi:10.1007/978-3-031-62344-8_5
- Li, M.; Mao, A.; Guan, Q.; Saiz, E. Nature-inspired adhesive systems. Chemical Society reviews 2024, 53, 8240–8305. doi:10.1039/d3cs00764b
- Zhou, J.; Zheng, H.; Sheng, W.; Hao, X.; Zhang, X. Preparation and Anti-Icing Properties of Zirconia Superhydrophobic Coating. Molecules (Basel, Switzerland) 2024, 29, 1837. doi:10.3390/molecules29081837
- Feng, Q.; Wu, W.; Cui, Y.; Zhou, Y.; Zhang, Y.; Xu, S.; Lin, L.; Zhou, M.; Li, Z. Reversible wettability control of self-assembled TiO2 scaffolds on bacterial cellulose from superhydrophobicity to superhydrophilicity. Cellulose 2024, 31, 2907–2920. doi:10.1007/s10570-024-05761-8
- Wang, J.; Li, F.; Pan, Y.; chen, f.; Huang, C.; Zhao, X. Robust Photopolymerized Superoleophobic/Superhydrophilic Mesh for Oil-Water Separation. Elsevier BV 2024. doi:10.2139/ssrn.4844768
- Huang, H.; Ding, M.; Zhang, Y.; Zhang, S.; Ling, Y.; Wang, W.; Zhang, S. How organic switches grafting on TiO2 modifies the surface potentials: theoretical insights. RSC advances 2023, 13, 15148–15156. doi:10.1039/d3ra00537b
- Zhang, C.; Wang, X. Study on the Cotton Fabrics with Photoinduced Reversibly Switchable Wettability. Journal of Nanotechnology 2023, 2023, 1–8. doi:10.1155/2023/8422293
- Zhou, Z.; Ma, B.; Zhang, X.; Deng, C.; Yang, S.; Hu, C. Fabrication of superhydrophobic PDMS/TiO2 composite coatings with corrosion resistance. Surface Innovations 2023, 11, 195–208. doi:10.1680/jsuin.22.00013
- Li, C.; Yang, J.; He, W.; Xiong, M.; Niu, X.; Li, X.; Yu, D. A Review on Fabrication and Application of Tunable Hybrid Micro–Nano Array Surfaces. Advanced Materials Interfaces 2023, 10. doi:10.1002/admi.202202160
- Li, Y.; Shi, B.; Luan, X.; Hao, Z.; Wang, Y. Achieving reversible superhydrophobic-superhydrophilic switching of lignocellulosic paper surface with modified Nano-TiO2 coating. Polymer Testing 2022, 116, 107789. doi:10.1016/j.polymertesting.2022.107789
- Zhou, H.; Li, Q.; Zhang, X.; Niu, H. Controllable Fabrication of Durable, Underliquid Superlyophobic Surfaces Based on the Lyophilic-Lyophobic Balance. Langmuir : the ACS journal of surfaces and colloids 2022, 38, 11962–11971. doi:10.1021/acs.langmuir.2c01718
- Huo, T.; Li, F.; Jiang, K.; Kong, W.; Zhao, X.; Hao, Z.; Pan, Y. Fluorocarbon-Based Selective-Superwetting Nanofibrous Membranes with Ultraviolet-Driven Switchable Wettability for Oil–Water Separation. ACS Applied Nano Materials 2022, 5, 13018–13026. doi:10.1021/acsanm.2c02809
- Liu, J.; Xiong, J.; Huang, Q.; Lu, T.; Chen, W.; Li, M. Eco-friendly synthesis of robust bioinspired cotton fabric with hybrid wettability for integrated water harvesting and water purification. Journal of Cleaner Production 2022, 350, 131524. doi:10.1016/j.jclepro.2022.131524
- Liu, X.; Wei, Y.; Tao, F.; Zhang, X.; Gai, L.; Liu, L. All-water-based superhydrophobic coating with reversible wettability for oil-water separation and wastewater purification. Progress in Organic Coatings 2022, 165, 106726. doi:10.1016/j.porgcoat.2022.106726
- Liu, J.; Li, M.; Luo, C.; Zhou, S.; Chen, W. Eco-friendly synthesis of self-reporting robust superhydrophobic coatings with damage sensitive photoluminescence. Chemical Engineering Journal 2022, 431, 134162. doi:10.1016/j.cej.2021.134162