Supporting Information
Movies of 3D tomographic reconstruction.
| Supporting Information File 1: Electron tomography_3D reconstruction_hollow NW grown at 2 pA and 0.6 nC. | ||
| Format: WMV | Size: 13.8 MB | Download |
| Supporting Information File 2: Electron tomography_3D longitudinal_hollow NW grown at 2 pA and 0.6 nC. | ||
| Format: WMV | Size: 1.8 MB | Download |
| Supporting Information File 3: Electron tomography_longitudinal section_hollow NW grown at 2 pA and 0.6 nC. | ||
| Format: WMV | Size: 2.3 MB | Download |
| Supporting Information File 4: Electron tomography_transversal section_hollow NW grown at 2 pA and 0.6 nC. | ||
| Format: WMV | Size: 1.8 MB | Download |
| Supporting Information File 5: Electron tomography_3D reconstruction_hollow NW grown at 7 pA and 1.009 nC. | ||
| Format: WMV | Size: 21.5 MB | Download |
| Supporting Information File 6: Electron tomography_3D longitudinal_hollow NW grown at 7 pA and 1.009 nC. | ||
| Format: WMV | Size: 3.7 MB | Download |
| Supporting Information File 7: Electron tomography_transversal section_hollow NW grown at 7 pA and 1.009 nC. | ||
| Format: WMV | Size: 3.8 MB | Download |
Cite the Following Article
3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing
Rosa Córdoba, Alfonso Ibarra, Dominique Mailly, Isabel Guillamón, Hermann Suderow and José María De Teresa
Beilstein J. Nanotechnol. 2020, 11, 1198–1206.
https://doi.org/10.3762/bjnano.11.104
How to Cite
Córdoba, R.; Ibarra, A.; Mailly, D.; Guillamón, I.; Suderow, H.; De Teresa, J. M. Beilstein J. Nanotechnol. 2020, 11, 1198–1206. doi:10.3762/bjnano.11.104
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 643.4 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Jany, B. R.; Madajska, K.; Butrymowicz-Kubiak, A.; Krok, F.; Szymańska, I. B. Evaluating metal-organic precursors for focused ion beam-induced deposition through solid-layer decomposition analysis. Beilstein Journal of Nanotechnology 2025, 16, 1942–1951. doi:10.3762/bjnano.16.135
- Ersoz, T. T.; Mohamed, A. E.-M. A.; Attallah, M. M. Additive manufacturing of superconductors: Opportunities and challenges. Materials Research Bulletin 2025, 189, 113448. doi:10.1016/j.materresbull.2025.113448
- Li, Q.; Yao, S.; Lin, X.; Xing, Y.; Zhou, Z.; Chai, Q. Investigation of Helium-Induced lattice disorder in GaN and AlN under precisely localized irradiation. Applied Surface Science 2025, 699, 163146. doi:10.1016/j.apsusc.2025.163146
- Córdoba, R.; Fomin, V. M. Topological and chiral superconductor nanoarchitectures. Applied Physics Letters 2024, 124. doi:10.1063/5.0206198
- Petrov, Y. V.; Vyvenko, O. F. Field Ion Sources for Research and Modification of the Structure of Amorphous and Crystalline Materials. Crystallography Reports 2024, 69, 2–15. doi:10.1134/s1063774523601193
- Петров, Ю. В.; Вывенко, О. Ф. Автоионные источники для исследования и модификации структуры аморфных и кристаллических материалов. Kristallografiâ 2024, 69, 5–20. doi:10.31857/s0023476124010029
- Jungwirth, F.; Salvador-Porroche, A.; Porrati, F.; Jochmann, N. P.; Knez, D.; Huth, M.; Gracia, I.; Cané, C.; Cea, P.; De Teresa, J. M.; Barth, S. Gas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursor: Comparing Direct-Write Processing and Thermal Conversion. The journal of physical chemistry. C, Nanomaterials and interfaces 2024, 128, 2967–2977. doi:10.1021/acs.jpcc.3c08250
- Córdoba, R. Additive nanofabrication using focused ion and electron beams. Encyclopedia of Condensed Matter Physics; Elsevier, 2024; pp 448–464. doi:10.1016/b978-0-323-90800-9.00035-4
- Höflich, K.; Hobler, G.; Allen, F. I.; Wirtz, T.; Rius, G.; McElwee-White, L.; Krasheninnikov, A. V.; Schmidt, M.; Utke, I.; Klingner, N.; Osenberg, M.; Córdoba, R.; Djurabekova, F.; Manke, I.; Moll, P.; Manoccio, M.; De Teresa, J. M.; Bischoff, L.; Michler, J.; De Castro, O.; Delobbe, A.; Dunne, P.; Dobrovolskiy, O. V.; Frese, N.; Gölzhäuser, A.; Mazarov, P.; Koelle, D.; Möller, W.; Pérez-Murano, F.; Philipp, P.; Vollnhals, F.; Hlawacek, G. Roadmap for focused ion beam technologies. Applied Physics Reviews 2023, 10. doi:10.1063/5.0162597
- Jungwirth, F.; Porrati, F.; Knez, D.; Sistani, M.; Plank, H.; Huth, M.; Barth, S. Focused Ion Beam vs Focused Electron Beam Deposition of Cobalt Silicide Nanostructures Using Single-Source Precursors: Implications for Nanoelectronic Gates, Interconnects, and Spintronics. ACS Applied Nano Materials 2022, 5, 14759–14770. doi:10.1021/acsanm.2c03074
- Xia, D.; Notte, J. Nano‐Kirigami Structures and Branched Nanowires Fabricated by Focused Ion Beam‐Induced Milling, Bending, and Deposition. Advanced Materials Interfaces 2022, 9. doi:10.1002/admi.202200696
- Wang, K.; Ma, Q.; Qu, C.-X.; Zhou, H.-T.; Cao, M.; Wang, S.-D. Review on 3D Fabrication at Nanoscale. AUTEX Research Journal 2022, 23, 350–369. doi:10.2478/aut-2022-0014
- Fang, C.; Chai, Q.; Chen, Y.; Xing, Y.; Zhou, Z. The chiral coating on an achiral nanostructure by the secondary effect in focused ion beam induced deposition. Nanotechnology 2022, 33, 135301. doi:10.1088/1361-6528/ac4308
- Allen, F. I. A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. Beilstein journal of nanotechnology 2021, 12, 633–664. doi:10.3762/bjnano.12.52
- Allen, F. I. Branched High Aspect Ratio Nanostructures Fabricated by Focused Helium Ion Beam Induced Deposition of an Insulator. Micromachines 2021, 12, 232. doi:10.3390/mi12030232