Cite the Following Article
Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing
Liangyi Zhang, Huan Li, Yiyuan Xie, Jing Guo and Zhiyuan Zhu
Beilstein J. Nanotechnol. 2020, 11, 1394–1401.
https://doi.org/10.3762/bjnano.11.123
How to Cite
Zhang, L.; Li, H.; Xie, Y.; Guo, J.; Zhu, Z. Beilstein J. Nanotechnol. 2020, 11, 1394–1401. doi:10.3762/bjnano.11.123
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 8.5 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Domingos, I.; Antunes, C.; Alves, H. Graphene-Based Triboelectric Multi-Sensors for Self-Powered Multimodal Motion Sensing in Smart Textiles. ACS Applied Electronic Materials 2025, 7, 9136–9145. doi:10.1021/acsaelm.5c01519
- Wattanasarn, H.; Ngennam, T.; Phewphong, S.; Sumpao, T.; Ananpreechakorn, W.; Thanachayanont, C. Cutting-Edge triboelectric nanogenerators: electrically conductive rubber reinforced with nano barium titanate. Materials Research Bulletin 2025, 192, 113635. doi:10.1016/j.materresbull.2025.113635
- Xiao, Y.; Guo, C.; Yan, H.; Zhao, D.; Tan, P.; Qi, R. A review of self-powered high-precision humidity sensors from device structure design to key material enhancement. The Innovation Energy 2025, 2, 100099. doi:10.59717/j.xinn-energy.2025.100099
- Yin, X.; Chen, Z.; Chen, H.; Wang, Q.; Chen, Q.; Wang, C.; Ye, C. Optimization strategy of triboelectric nanogenerators for high humidity environment service performance. EcoMat 2024, 6. doi:10.1002/eom2.12493
- Kallupadi, V. P.; Varghese, H.; Hareesh, U. N. S.; Chandran, A. Modulating Contact Electrification With Metal‐Organic Frameworks in Flexible Triboelectric Nanogenerators for Kinetic Energy Harvesting and Self‐Powered Humidity Sensing Applications. Advanced Functional Materials 2024, 35. doi:10.1002/adfm.202411855
- Kumar Rachamalla, A.; Navaneeth, M.; Banoo, T.; Deepshikha; Prasad Rebaka, V.; Kumar, Y.; Kumar Rajaboina, R.; Nagarajan, S. A high performance triboelectric nanogenerator using assembled sugar naphthalimides for self-powered electronics and sensors. Chemical Engineering Journal 2024, 490, 151800. doi:10.1016/j.cej.2024.151800
- Subbiah, N.; Rachamalla, A. K.; Navaneeth, M.; Banoo, T.; Rebaka, V. P.; Kumar, Y.; Maheswari, C. U.; Sridharan, V.; Kumar, R. R.; Deepshikha, D. A High Performance Triboelectric Nanogenerator Using Assembled Sugar Naphthalimides for Self-Powered Electronics and Sensors. Elsevier BV 2024. doi:10.2139/ssrn.4772258
- Kim, D. E.; Park, J.; Kim, Y. T. Flexible Sandwich-Structured Foldable Triboelectric Nanogenerator Based on Paper Substrate for Eco-Friendly Electronic Devices. Energies 2022, 15, 6236. doi:10.3390/en15176236
- Afzal, U.; Aslam, M.; Afzal, F.; Maryam, K.; Ahmad, N.; Zafar, Q.; Farooq, Z. Fabrication of a graphene-based sensor to detect the humidity and the temperature of a metal body with imprecise data analysis. RSC advances 2022, 12, 21297–21308. doi:10.1039/d2ra03474c
- Lin, L.; Chung, C.-K. PDMS Microfabrication and Design for Microfluidics and Sustainable Energy Application: Review. Micromachines 2021, 12, 1350. doi:10.3390/mi12111350
- Shao, Y.; Shen, M.; Zhou, Y.; Cui, X.; Li, L.; Zhang, Y. Nanogenerator-based self-powered sensors for data collection. Beilstein journal of nanotechnology 2021, 12, 680–693. doi:10.3762/bjnano.12.54