Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy

María Sanromán Iglesias and Marek Grzelczak
Beilstein J. Nanotechnol. 2020, 11, 263–284. https://doi.org/10.3762/bjnano.11.20

Cite the Following Article

Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy
María Sanromán Iglesias and Marek Grzelczak
Beilstein J. Nanotechnol. 2020, 11, 263–284. https://doi.org/10.3762/bjnano.11.20

How to Cite

Iglesias, M. S.; Grzelczak, M. Beilstein J. Nanotechnol. 2020, 11, 263–284. doi:10.3762/bjnano.11.20

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 546.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Laxmi, B.; Ankireddy, S. R.; Devi, P. U. M. Advances in nanomaterial-mediated sensing methods for detecting human-pathogenic DNA viruses. Recent Developments in Nanomaterial-based Sensing of Human Pathogens; Elsevier, 2024; pp 115–129. doi:10.1016/b978-0-443-18574-8.00003-0
  • OKUMUŞ, A.; BİLGE, F. RT-PCR Analysis of Caucasian and Mugla Honey Bees by SNP Markers of Chalkbrood Disease. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi 2023, 9, 196–204. doi:10.24180/ijaws.1185587
  • Montaño-Priede, J. L.; Sanromán-Iglesias, M.; Zabala, N.; Grzelczak, M.; Aizpurua, J. Robust Rules for Optimal Colorimetric Sensing Based on Gold Nanoparticle Aggregation. ACS sensors 2023, 8, 1827–1834. doi:10.1021/acssensors.3c00287
  • Wittmann, C. doi:10.1002/9780470027318.a9210.pub2
  • Milan, J.; Niemczyk, K.; Kus-Liśkiewicz, M. Treasure on the Earth-Gold Nanoparticles and Their Biomedical Applications. Materials (Basel, Switzerland) 2022, 15, 3355. doi:10.3390/ma15093355
  • Zambianchi, P.; Hermógenes, G.; Zambianchi, J. Quantification of gold nanoparticles using total reflection X-ray fluorescence by Monte Carlo simulation (MCNP code) applied to cancer cell research. Radiation Physics and Chemistry 2022, 193, 109937. doi:10.1016/j.radphyschem.2021.109937
  • Ding, Y.; Fan, Z.; Yao, B.; Xu, D.; Xie, M.; Zhang, K. Nanoparticle-based fluorescence probe for detection of NF-κB transcription factor in single cell via steric hindrance. Mikrochimica acta 2021, 188, 226. doi:10.1007/s00604-021-04878-y
  • Mukhtar, M.; Sargazi, S.; Barani, M.; Madry, H.; Rahdar, A.; Cucchiarini, M. Application of Nanotechnology for Sensitive Detection of Low-Abundance Single-Nucleotide Variations in Genomic DNA: A Review. Nanomaterials (Basel, Switzerland) 2021, 11, 1384. doi:10.3390/nano11061384
  • Benelmekki, M.; Gasso, S.; Martinez, L. M. Simultaneous Optical and Magnetophoretic Monitoring of DNA Hybridization Using Superparamagnetic and Plasmonic Colloids. Colloids and surfaces. B, Biointerfaces 2020, 193, 111126. doi:10.1016/j.colsurfb.2020.111126
  • Ren, X.; Xue, Q.; Wen, L.; Li, X.; Wang, H. Fluorescence-enhanced p19 proteins-conjugated single quantum dot with multiplex antenna for one-step, specific and sensitive miRNAs detection. Analytica chimica acta 2018, 1053, 114–121. doi:10.1016/j.aca.2018.11.060
  • Piao, J.; Zhao, Q.; Zhou, D.; Peng, W.; Gao, W.; Chen, M.; Shu, G.; Gong, X.; Chang, J. Enzyme-free colorimetric detection of MicroRNA-21 using metal chelator as label for signal generation and amplification. Analytica chimica acta 2018, 1052, 145–152. doi:10.1016/j.aca.2018.11.044
Other Beilstein-Institut Open Science Activities