Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

Satheeshkumar Balu, Manisha Vidyavathy Sundaradoss, Swetha Andra and Jaison Jeevanandam
Beilstein J. Nanotechnol. 2020, 11, 285–295. https://doi.org/10.3762/bjnano.11.21

Cite the Following Article

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study
Satheeshkumar Balu, Manisha Vidyavathy Sundaradoss, Swetha Andra and Jaison Jeevanandam
Beilstein J. Nanotechnol. 2020, 11, 285–295. https://doi.org/10.3762/bjnano.11.21

How to Cite

Balu, S.; Sundaradoss, M. V.; Andra, S.; Jeevanandam, J. Beilstein J. Nanotechnol. 2020, 11, 285–295. doi:10.3762/bjnano.11.21

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1023.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sathyanarayanan, S.; Kannan, S. Strontium and copper co-doped nanohydroxyapatite for bone augmentation. International Journal of Materials Research 2024, 115, 202–207. doi:10.1515/ijmr-2023-0089
  • Piras, S.; Salathia, S.; Guzzini, A.; Zovi, A.; Jackson, S.; Smirnov, A.; Fragassa, C.; Santulli, C. Biomimetic Use of Food-Waste Sources of Calcium Carbonate and Phosphate for Sustainable Materials-A Review. Materials (Basel, Switzerland) 2024, 17, 843. doi:10.3390/ma17040843
  • Osial, M.; Wilczewski, S.; Szulc, J.; Nguyen, H. D.; Nguyen, T. K. O.; Skórczewska, K.; Majkowska-Pilip, A.; Żelechowska-Matysiak, K.; Nieciecka, D.; Pregowska, A.; Nguyen, T. P.; Tymoszuk, A.; Kulus, D.; Giersig, M. Nanohydroxyapatite Loaded with 5-Fluorouracil and Calendula officinalis L. Plant Extract Rich in Myo-Inositols for Treatment of Ovarian Cancer Cells. Coatings 2023, 13, 1944. doi:10.3390/coatings13111944
  • Fernández-Penas, R.; Verdugo-Escamilla, C.; Triunfo, C.; Gärtner, S.; D'Urso, A.; Oltolina, F.; Follenzi, A.; Maoloni, G.; Cölfen, H.; Falini, G.; Gómez-Morales, J. A sustainable one-pot method to transform seashell waste calcium carbonate to osteoinductive hydroxyapatite micro-nanoparticles. Journal of materials chemistry. B 2023, 11, 7766–7777. doi:10.1039/d3tb00856h
  • Borciani, G.; Fischetti, T.; Ciapetti, G.; Montesissa, M.; Baldini, N.; Graziani, G. Marine biological waste as a source of hydroxyapatite for bone tissue engineering applications. Ceramics International 2023, 49, 1572–1584. doi:10.1016/j.ceramint.2022.10.341
  • SurendraBabu, K.; YogaVignesh, V.; Nagalakshmi, R.; Prakash, S. Investigation of corrosion and surface morphological behaviour of hydroxyapatite coated surgical stainless-steel using electrodeposition process. In AIP Conference Proceedings, AIP Publishing, 2023. doi:10.1063/5.0110709
  • Kamal, M. M.; Mahmud, S.; Plabon, I. A.; Kader, M. A.; Islam, M. N. Effects of Sintering Temperature on the Physical, Structural, Mechanical and Antimicrobial Properties of Extracted Hydroxyapatite Ceramics from Anabas Testudineus Bone and Head Scull for Biomedical Applications. Elsevier BV 2023. doi:10.2139/ssrn.4676111
  • Q. AL-Shahrabalee, S.; Alaa Jaber, H. Investigation of the Nd-Ce-Mg-Zn/Substituted Hydroxyapatite Effect on Biological Properties and Osteosarcoma Cells. Journal of Renewable Materials 2023, 11, 1485–1498. doi:10.32604/jrm.2023.025011
  • Kalpana, M.; Nagalakshmi, R.; Jeyakanthan, M. Development of Hydroxyapatite Coating on Titanium Alloy for Orthopedic Applications. ECS Journal of Solid State Science and Technology 2022, 11, 113007. doi:10.1149/2162-8777/aca1dd
  • Paknia, S.; Izadi, Z.; Moosaipour, M.; Moradi, S.; Khalilzadeh, B.; Jaymand, M.; Samadian, H. Fabrication and characterization of electroconductive/osteoconductive hydrogel nanocomposite based on poly(dopamine-co-aniline) containing calcium phosphate nanoparticles. Journal of Molecular Liquids 2022, 362, 119701. doi:10.1016/j.molliq.2022.119701
  • Mehnath, S.; Muthuraj, V.; Jeyaraj, M. Biomimetic and osteogenic natural HAP coated three dimensional implant for orthopaedic application. European Polymer Journal 2022, 175, 111387. doi:10.1016/j.eurpolymj.2022.111387
  • Bhagyaraj, S.; Al-Ghouti, M. A.; Khan, M.; Kasak, P.; Krupa, I. Modified os sepiae of Sepiella inermis as a low cost, sustainable, bio-based adsorbent for the effective remediation of boron from aqueous solution. Environmental science and pollution research international 2022, 29, 71014–71032. doi:10.1007/s11356-022-20578-3
  • Burdușel, A.-C.; Gherasim, O.; Andronescu, E.; Grumezescu, A. M.; Ficai, A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022, 14, 770. doi:10.3390/pharmaceutics14040770
  • Parajuli, K.; Malla, K. P.; Panchen, N.; G.C., G.; Adhikari, R. Isolation of Antibacterial Nano-Hydroxyapatite Biomaterial from Waste Buffalo Bone and Its Characterization. Chemistry & Chemical Technology 2022, 16, 133–141. doi:10.23939/chcht16.01.133
  • T., G.; C., K.; P. R, R.; A., P.; K.R, C. P. D. Tribological and Mechanical Properties of Hybrid nHAp/ SiO2/chitosan Composites Fabricated from Snail Shell Using Grey Rational Grade (GRG) Analysis. Silicon 2021, 14, 7483–7500. doi:10.1007/s12633-021-01436-2
  • T., G.; C., K.; R, R. P.; A., P.; K.R, C. P. D. Tribological and Mechanical Properties of Hybrid nHAp/ SiO2/chitosan Composites Fabricated from Snail Shell Using Grey Rational Grade (GRG) Analysis. Silicon 2021, 1–18.
  • Balu, S. K.; Sampath, V.; Andra, S.; Alagar, S.; Vidyavathy, S. M. Fabrication of carbon and silver nanomaterials incorporated hydroxyapatite nanocomposites: Enhanced biological and mechanical performances for biomedical applications. Materials science & engineering. C, Materials for biological applications 2021, 128, 112296. doi:10.1016/j.msec.2021.112296
  • Balu, S. K.; Andra, S.; Jeevanandam, J.; S, M. V.; Sampath. Emerging marine derived nanohydroxyapatite and their composites for implant and biomedical applications. Journal of the mechanical behavior of biomedical materials 2021, 119, 104523. doi:10.1016/j.jmbbm.2021.104523
  • Ismail, R.; Laroybafih, M. B.; Fitriyana, D. F.; Nugroho, S.; Santoso, Y. I.; Hakim, A. J.; Al Mulqi, M. S.; Bayuseno, A. P. The Effect of Hydrothermal Holding Time on The Characterization of Hydroxyapatite Synthesized from Green Mussel Shells. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2021, 80, 84–93. doi:10.37934/arfmts.80.1.8493
  • Sabbih, G. O.; Kulabhusan, P. K.; Singh, R. K.; Jeevanandam, J.; Danquah, M. K. Biocomposites for the fabrication of artificial organs. Green Biocomposites for Biomedical Engineering; Elsevier, 2021; pp 301–328. doi:10.1016/b978-0-12-821553-1.00010-7
Other Beilstein-Institut Open Science Activities