Supporting Information
| Supporting Information File 1: Further experimental measurements, details of the pp-KPFM experiment, characterization of the solar cell device and derivation of the formula used to fit the pp-KPFM spectroscopy. | ||
| Format: PDF | Size: 749.3 KB | Download |
Cite the Following Article
Implementation of data-cube pump–probe KPFM on organic solar cells
Benjamin Grévin, Olivier Bardagot and Renaud Demadrille
Beilstein J. Nanotechnol. 2020, 11, 323–337.
https://doi.org/10.3762/bjnano.11.24
How to Cite
Grévin, B.; Bardagot, O.; Demadrille, R. Beilstein J. Nanotechnol. 2020, 11, 323–337. doi:10.3762/bjnano.11.24
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 1.3 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ponnan, S.; Mangalassery, S.; Desai, N. R.; Naraharisetty, S. R. G. Excited state energy relaxation dynamics in near-infrared dye via transient absorption spectroscopy. Journal of Optics 2024, 53, 4786–4795. doi:10.1007/s12596-023-01652-6
- Sui, J.; Liu, P.; Jia, Y.; Guo, R.; Bao, L.; Zhao, J.; Dong, L.; Wang, Y.; Lin, W.; Liu, Y.; Wang, J. Photomechaelectric Nanogenerators with Different Photoisomers and Dipole Units for Harvesting UV Light Energy. Small (Weinheim an der Bergstrasse, Germany) 2023, 20, e2307786. doi:10.1002/smll.202307786
- Sato, J.; Ishibashi, R.; Takahashi, T. Time-resolved electrostatic force microscopy under base-bias-level control. Measurement Science and Technology 2023, 35, 35005–035005. doi:10.1088/1361-6501/ad10e0
- Grévin, B.; Husainy, F.; Aldakov, D.; Aumaître, C. Dual-heterodyne Kelvin probe force microscopy. Beilstein journal of nanotechnology 2023, 14, 1068–1084. doi:10.3762/bjnano.14.88
- Eftekhari, Z.; Rezaei, N.; Stokkel, H.; Zheng, J.-Y.; Cerreta, A.; Hermes, I.; Nguyen, M.; Rijnders, G.; Saive, R. Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination. Beilstein journal of nanotechnology 2023, 14, 1059–1067. doi:10.3762/bjnano.14.87
- Yalcinkaya, Y.; Rohrbeck, P. N.; Schütz, E. R.; Fakharuddin, A.; Schmidt‐Mende, L.; Weber, S. A. Nanoscale Surface Photovoltage Spectroscopy. Advanced Optical Materials 2023, 12. doi:10.1002/adom.202301318
- Palewicz, M.; Sikora, A.; Piasecki, T.; Gacka, E.; Nitschke, P.; Gnida, P.; Jarząbek, B.; Gotszalk, T. Determination of the Electrical Parameters of Iodine-Doped Polymer Solar Cells at the Macro- and Nanoscale for Indoor Applications. Energies 2023, 16, 4741. doi:10.3390/en16124741
- Kilpatrick, J. I.; Kargin, E.; Rodriguez, B. J. Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water. Beilstein journal of nanotechnology 2022, 13, 922–943. doi:10.3762/bjnano.13.82
- Miyazaki, M.; Sugawara, Y.; Li, Y. J. Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy. Beilstein journal of nanotechnology 2022, 13, 712–720. doi:10.3762/bjnano.13.63
- Geng, J.; Zhang, H.; Meng, X.; Gao, H.; Rong, W.; Xie, H. Three-Dimensional Kelvin Probe Force Microscopy. ACS applied materials & interfaces 2022, 14, 32719–32728. doi:10.1021/acsami.2c07645
- Aubriet, V.; Courouble, K.; Bardagot, O.; Demadrille, R.; Borowik, Ł.; Grévin, B. Hidden surface photovoltages revealed by pump probe KPFM. Nanotechnology 2022, 33, 225401. doi:10.1088/1361-6528/ac5542
- Aubriet, V.; Courouble, K.; Bardagot, O.; Demadrille, R.; Borowik, L.; Grévin, B. Hidden surface photovoltages revealed by pump probe KPFM. 2021.
- Alosaimi, G.; Shin, S. J.; Chin, R. L.; Kim, J. H.; Yun, J. S.; Seidel, J. Probing Charge Carrier Properties and Ion Migration Dynamics of Indoor Halide Perovskite PV Devices Using Top- and Bottom-Illumination SPM Studies. Advanced Energy Materials 2021, 11, 2101739. doi:10.1002/aenm.202101739
- Toth, D.; Hailegnaw, B.; Richheimer, F.; Castro, F. A.; Kienberger, F.; Scharber, M. C.; Wood, S.; Gramse, G. Nanoscale Charge Accumulation and Its Effect on Carrier Dynamics in Tri-cation Perovskite Structures. ACS applied materials & interfaces 2020, 12, 48057–48066. doi:10.1021/acsami.0c10641
- Lombana, A.; Battaglini, N.; Zrig, S.; Lagoute, J.; Chevillot-Biraud, A.; Lang, P. Nanoscale Mapping of Photo‐Induced Charge Carriers Generated at Interfaces of a Donor/Acceptor 2D‐Assembly by Light‐Assisted‐Scanning Tunneling Microscopy. Advanced Materials Interfaces 2020, 7, 2001325. doi:10.1002/admi.202001325
- Toth, D.; Hailegnaw, B.; Richheimer, F.; Wood, S.; Castro, F. A.; Kienberger, F.; Scharber, M. C.; Gramse, G. Nanoscale charge accumulation and its effect on carrier dynamics in tri-cation perovskite structures. 2020.