Advanced atomic force microscopy II

  1. editorImage
  1. Editors
    Dr. Milica Todorovic, Aalto University, Finland
    Prof. Mehmet Z. Baykara, University of California Merced, USA
    PD Dr. Thilo Glatzel, University of Basel, Switzerland

In this thematic issue, we present state-of-the-art research on non-contact atomic force microscopy (nc-AFM) with a focus on high resolution, the development of advanced scanning and spectroscopy techniques, simulation and theoretical modeling of the tip–sample interactions, as well as the application of nc-AFM to new materials.

Potential contributions are expected to be focused on the following topics:

- Novel instrumentation and techniques in AFM
- Atomic-resolution imaging on insulating substrates, semiconductors, and metals
- High-resolution imaging of molecules, clusters and biological systems
- Atomic- and molecular-scale manipulation
- Simultaneous force and tunneling current spectroscopy
- High-resolution imaging and spectroscopy in liquid environments
- Theoretical analysis of contrast mechanisms, forces and tunneling phenomena
- 2D and 3D force-field mapping
- Small amplitude and lateral force measurements using dynamic methods
- Mechanisms and understanding of damping and energy dissipation
- Nanoscale measurements of charges, work function, and magnetic properties
- Theoretical aspects of scanning probe techniques

Additional articles will be published here soon.

  • Full Research Paper
  • Published 25 Sep 2018

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2018, 9, 2546–2560, doi:10.3762/bjnano.9.237

Nitrous oxide as an effective AFM tip functionalization: a comparative study

  1. Taras Chutora,
  2. Bruno de la Torre,
  3. Pingo Mutombo,
  4. Jack Hellerstedt,
  5. Jaromír Kopeček,
  6. Pavel Jelínek and
  7. Martin Švec
  • Full Research Paper
  • Published 30 Jan 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 315–321, doi:10.3762/bjnano.10.30

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  1. Aaron Mascaro,
  2. Yoichi Miyahara,
  3. Tyler Enright,
  4. Omur E. Dagdeviren and
  5. Peter Grütter
  • Review
  • Published 01 Mar 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  1. Sara Freund,
  2. Antoine Hinaut,
  3. Nathalie Marinakis,
  4. Edwin C. Constable,
  5. Ernst Meyer,
  6. Catherine E. Housecroft and
  7. Thilo Glatzel
  • Full Research Paper
  • Published 15 Apr 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Influence of dielectric layer thickness and roughness on topographic effects in magnetic force microscopy

  1. Alexander Krivcov,
  2. Jasmin Ehrler,
  3. Marc Fuhrmann,
  4. Tanja Junkers and
  5. Hildegard Möbius
  • Full Research Paper
  • Published 17 May 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 1056–1064, doi:10.3762/bjnano.10.106

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  1. Dominik Wrana,
  2. Karol Cieślik,
  3. Wojciech Belza,
  4. Christian Rodenbücher,
  5. Krzysztof Szot and
  6. Franciszek Krok
  • Full Research Paper
  • Published 02 Aug 2019

  • PDF

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Ion mobility and material transport on KBr in air as a function of the relative humidity

  1. Dominik J. Kirpal,
  2. Korbinian Pürckhauer,
  3. Alfred J. Weymouth and
  4. Franz J. Giessibl
  • Full Research Paper
  • Published 30 Oct 2019

  • PDF

  • Supp. Info

Beilstein J. Nanotechnol. 2019, 10, 2084–2093, doi:10.3762/bjnano.10.203

Keep Informed

RSS Feed

Subscribe to our Latest Articles RSS Feed.


Follow the Beilstein-Institut


Twitter: @BeilsteinInst