Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

Valentina Francia, Daphne Montizaan and Anna Salvati
Beilstein J. Nanotechnol. 2020, 11, 338–353. https://doi.org/10.3762/bjnano.11.25

Cite the Following Article

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine
Valentina Francia, Daphne Montizaan and Anna Salvati
Beilstein J. Nanotechnol. 2020, 11, 338–353. https://doi.org/10.3762/bjnano.11.25

How to Cite

Francia, V.; Montizaan, D.; Salvati, A. Beilstein J. Nanotechnol. 2020, 11, 338–353. doi:10.3762/bjnano.11.25

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 394.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Petretto, E.; Campomanes, P.; Vanni, S. Development of a coarse-grained model for surface-functionalized gold nanoparticles: towards an accurate description of their aggregation behavior. Soft matter 2023. doi:10.1039/d3sm00094j
  • Espíndola, C. Some Nanocarrier's Properties and Chemical Interaction Mechanisms with Flavones. Molecules (Basel, Switzerland) 2023, 28, 2864. doi:10.3390/molecules28062864
  • Hemmatpour, H.; Haddadi-Asl, V.; Burgers, T. C. Q.; Yan, F.; Stuart, M. C. A.; Reker-Smit, C.; Vlijm, R.; Salvati, A.; Rudolf, P. Temperature-responsive and biocompatible nanocarriers based on clay nanotubes for controlled anti-cancer drug release. Nanoscale 2023, 15, 2402–2416. doi:10.1039/d2nr06801j
  • Calvo-Castro, L. A.; Irías-Mata, A.; Cano-Contreras, D.; Arnáez-Serrano, E.; Chacón-Cerdas, R.; Starbird-Pérez, R.; Morales-Sánchez, J.; Centeno-Cerdas, C. Self-Emulsifying Micellization of Crude Extracts from Apple (Malus domestica cv. Anna), Plum (Prunus domestica cv. Satsuma), and Guava (Psidium guajava L.) Fruits. Molecules (Basel, Switzerland) 2023, 28, 1297. doi:10.3390/molecules28031297
  • Barbosa, L.; Oliveira, R. L.; de Macedo, E. F.; Hurtado, C. R.; Ramos, L. d. P.; Oliveira, L. D.; Conceição, K.; Tada, D. B.; Trichês, E. d. S. Surface modification of calcium phosphate scaffolds with antimicrobial agents for bone tissue engineering. Surface Modification and Functionalization of Ceramic Composites; Elsevier, 2023; pp 289–322. doi:10.1016/b978-0-323-85883-0.00017-x
  • de Macedo, E. F.; Santos, N. S.; Nascimento, L. S.; Mathey, R.; Brenet, S.; de Moura, M. S.; Hou, Y.; Tada, D. B. Interaction between Nanoparticles, Membranes and Proteins: A Surface Plasmon Resonance Study. International journal of molecular sciences 2022, 24, 591. doi:10.3390/ijms24010591
  • Richards, C. J.; Ahmadi, M.; Stuart, M. C. A.; Kooi, B. J.; Åberg, C.; Roos, W. H. The effect of biomolecular corona on adsorption onto and desorption from a model lipid membrane. Nanoscale 2022, 15, 248–258. doi:10.1039/d2nr05296b
  • Su, Y.; Yang, F.; Wang, M.; Cheung, P. C. K. Cancer immunotherapeutic effect of carboxymethylated β-d-glucan coupled with iron oxide nanoparticles via reprogramming tumor-associated macrophages. International journal of biological macromolecules 2022, 228, 692–705. doi:10.1016/j.ijbiomac.2022.12.154
  • Zhang, W.; Taheri-Ledari, R.; Ganjali, F.; Mirmohammadi, S. S.; Qazi, F. S.; Saeidirad, M.; KashtiAray, A.; Zarei-Shokat, S.; Tian, Y.; Maleki, A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review. RSC advances 2022, 13, 80–114. doi:10.1039/d2ra06888e
  • Heya, M. S.; Cordero-Díaz, A.; Galindo-Rodríguez, S. A.; Verde-Star, M. J.; Sánchez-García, E.; Villarreal-Villarreal, J. P.; Guillén-Meléndez, G. A. Overcoming tumor and mucosal barriers through active-loaded nanocarriers: nanoparticles and exosomes. Applied Nanoscience 2022. doi:10.1007/s13204-022-02724-y
  • Aliyandi, A.; Reker-Smit, C.; Zuhorn, I. S.; Salvati, A. Cell surface biotinylation to identify the receptors involved in nanoparticle uptake into endothelial cells. Acta biomaterialia 2022, 155, 507–520. doi:10.1016/j.actbio.2022.11.010
  • Wang, S.; Song, Y.; Ma, J.; Chen, X.; Guan, Y.; Peng, H.; Yan, G.; Tang, R. Dynamic crosslinked polymeric nano-prodrugs for highly selective synergistic chemotherapy. Asian journal of pharmaceutical sciences 2022, 17, 880–891. doi:10.1016/j.ajps.2022.09.004
  • Petretto, E.; Ong, Q. K.; Olgiati, F.; Mao, T.; Campomanes, P.; Stellacci, F.; Vanni, S. Monovalent ion-mediated charge-charge interactions drive aggregation of surface-functionalized gold nanoparticles. Nanoscale 2022, 14, 15181–15192. doi:10.1039/d2nr02824g
  • Ficerman, W.; Wiśniewski, M.; Roszek, K. Interactions of nanomaterials with cell signalling systems - Focus on purines-mediated pathways. Colloids and surfaces. B, Biointerfaces 2022, 220, 112919. doi:10.1016/j.colsurfb.2022.112919
  • Stepanova, D. A.; Pigareva, V. A.; Berkovich, A. K.; Bolshakova, A. V.; Spiridonov, V. V.; Grozdova, I. D.; Sybachin, A. V. Ultrasonic Film Rehydration Synthesis of Mixed Polylactide Micelles for Enzyme-Resistant Drug Delivery Nanovehicles. Polymers 2022, 14, 4013. doi:10.3390/polym14194013
  • Han, J.; Tian, Y.; Wang, M.; Li, Y.; Yin, J.; Qu, W.; Yan, C.; Ding, R.; Guan, Y.; Wang, Q. Proteomics unite traditional toxicological assessment methods to evaluate the toxicity of iron oxide nanoparticles. Frontiers in pharmacology 2022, 13, 1011065. doi:10.3389/fphar.2022.1011065
  • Yang, T.; Zhai, J.; Hu, D.; Yang, R.; Wang, G.; Li, Y.; Liang, G. "Targeting Design" of Nanoparticles in Tumor Therapy. Pharmaceutics 2022, 14, 1919. doi:10.3390/pharmaceutics14091919
  • Ramírez-Morales, M. A.; Goldt, A. E.; Kalachikova, P. M.; Ramirez B, J. A.; Suzuki, M.; Zhigach, A. N.; Ben Salah, A.; Shurygina, L. I.; Shandakov, S. D.; Zatsepin, T.; Krasnikov, D. V.; Maekawa, T.; Nikolaev, E. N.; Nasibulin, A. G. Albumin Stabilized Fe@C Core-Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy. Nanomaterials (Basel, Switzerland) 2022, 12, 2869. doi:10.3390/nano12162869
  • Sachdeva, V.; Monga, A.; Vashisht, R.; Singh, D.; Singh, A.; Bedi, N. Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. Journal of Drug Delivery Science and Technology 2022, 74, 103585. doi:10.1016/j.jddst.2022.103585
  • Griffiths, G.; Gruenberg, J.; Marsh, M.; Wohlmann, J.; Jones, A. T.; Parton, R. G. Nanoparticle entry into cells; the cell biology weak link. Advanced drug delivery reviews 2022, 188, 114403. doi:10.1016/j.addr.2022.114403
Other Beilstein-Institut Open Science Activities