Cite the Following Article
A review of demodulation techniques for multifrequency atomic force microscopy
David M. Harcombe, Michael G. Ruppert and Andrew J. Fleming
Beilstein J. Nanotechnol. 2020, 11, 76–91.
https://doi.org/10.3762/bjnano.11.8
How to Cite
Harcombe, D. M.; Ruppert, M. G.; Fleming, A. J. Beilstein J. Nanotechnol. 2020, 11, 76–91. doi:10.3762/bjnano.11.8
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 175.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Xu, K.; Xie, Y.; Ma, S.; Liang, Q.; Shi, Z. Heterodyne High-Harmonic Electrostatic Force Microscopy with Improved Spatial Resolution for Nanoscale Identification of Metallic/Semiconducting Carbon Nanotubes. ACS applied materials & interfaces 2024, 16, 39867–39875. doi:10.1021/acsami.4c08163
- Wu, S.; Gu, J.; Li, R.; Tang, Y.; Gao, L.; An, C.; Deng, Q.; Zhao, L.; Hu, N. Progress on mechanical and tribological characterization of 2D materials by AFM force spectroscopy. Friction 2024, 12, 2627–2656. doi:10.1007/s40544-024-0864-9
- Xia, F.; Rangelow, I. W.; Youcef-Toumi, K. AFM Electronics and Signal Processing. Active Probe Atomic Force Microscopy; Springer International Publishing, 2024; pp 227–248. doi:10.1007/978-3-031-44233-9_8
- Alemansour, H.; Reza Moheimani, S. O. Model-Based Control of the Scanning Tunneling Microscope: Enabling New Modes of Imaging, Spectroscopy, and Lithography. IEEE Control Systems 2024, 44, 46–66. doi:10.1109/mcs.2023.3329923
- Fozouni, Y.; Larson, E. C.; Gnade, B. Towards automated molecular detection through simulated generation of CMOS-based rotational spectroscopy. Heliyon 2023, 9, e17055. doi:10.1016/j.heliyon.2023.e17055
- Wang, Z.; Shi, X.; Wang, W.; Cai, W. High-Performance Digital Lock-In Amplifier Module Based on an Open-Source Red Pitaya Platform: Implementation and Applications. IEEE Transactions on Instrumentation and Measurement 2023, 72, 1–14. doi:10.1109/tim.2022.3221746
- Guo, Z.-K.; Li, Y.-G.; Yu, B.-C.; Zhou, S.-C.; Meng, Q.-Y.; Lu, X.-X.; Huang, Y.-F.; Liu, G.-P.; Lu, J. Research progress of lock-in amplifiers. Acta Physica Sinica 2023, 72, 224206. doi:10.7498/aps.72.20230579
- Romero-Fierro, D.; Bustamante-Torres, M.; Bravo-Plascencia, F.; Esquivel-Lozano, A.; Ruiz, J.-C.; Bucio, E. Recent Trends in Magnetic Polymer Nanocomposites for Aerospace Applications: A Review. Polymers 2022, 14, 4084. doi:10.3390/polym14194084
- Çelik, D. Lyapunov based harmonic compensation and charging with three phase shunt active power filter in electrical vehicle applications. International Journal of Electrical Power & Energy Systems 2022, 136, 107564. doi:10.1016/j.ijepes.2021.107564
- Ragazzon, M. R. P.; Messineo, S.; Gravdahl, J. T.; Harcombe, D. M.; Ruppert, M. G. The Generalized Lyapunov Demodulator: High-Bandwidth, Low-Noise Amplitude and Phase Estimation. IEEE Open Journal of Control Systems 2022, 1, 69–84. doi:10.1109/ojcsys.2022.3181111
- Gisbert, V. G.; Garcia, R. Accurate Wide-Modulus-Range Nanomechanical Mapping of Ultrathin Interfaces with Bimodal Atomic Force Microscopy. ACS nano 2021, 15, 20574–20581. doi:10.1021/acsnano.1c09178
- Jaufenthaler, A.; Kornack, T. W.; Lebedev, V.; Limes, M.; Körber, R.; Liebl, M.; Baumgarten, D. Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles. Sensors (Basel, Switzerland) 2021, 21, 1212. doi:10.3390/s21041212
- Gupta, S.; Wang, E.; Derrien, S.; Wilson, J. W. DR-RINS: Digital real-time relative intensity noise suppressor for pump-probe spectroscopy and microscopy. The Review of scientific instruments 2021, 92, 023704. doi:10.1063/5.0032376
- Payam, A. F.; Biglarbeigi, P.; Morelli, A.; Lemoine, P.; McLaughlin, J.; Finlay, D. Data acquisition and imaging using wavelet transform: a new path for high speed transient force microscopy. Nanoscale advances 2021, 3, 383–398. doi:10.1039/d0na00531b
- Jolin, S.; Borgani, R.; Tholen, M.; Forchheimer, D.; Haviland, D. B. Calibration of mixer amplitude and phase imbalance in superconducting circuits. The Review of scientific instruments 2020, 91, 124707. doi:10.1063/5.0025836
- Flater, E. E.; Mugdha, A. C.; Gupta, S.; Hudson, W. A.; Fahrenkamp, A. A.; Killgore, J. P.; Wilson, J. W. Error estimation and enhanced stiffness sensitivity in contact resonance force microscopy with a multiple arbitrary frequency lock-in amplifier (MAFLIA). Measurement Science and Technology 2020, 31, 115009. doi:10.1088/1361-6501/ab97f9
- Abramovitch, D. Y. 2020 IEEE Conference on Control Technology and Applications (CCTA); IEEE, 2020; pp 474–491. doi:10.1109/ccta41146.2020.9206161
- Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chemical Society reviews 2020, 49, 5850–5884. doi:10.1039/d0cs00318b
- Ahmed, H.; Benbouzid, M. Gradient Estimator-Based Amplitude Estimation for Dynamic Mode Atomic Force Microscopy: Small-Signal Modeling and Tuning. Sensors (Basel, Switzerland) 2020, 20, 2703. doi:10.3390/s20092703