Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

Michael Roos, Benedikt Uhl, Daniela Künzel, Harry E. Hoster, Axel Groß and R. Jürgen Behm
Beilstein J. Nanotechnol. 2011, 2, 365–373. https://doi.org/10.3762/bjnano.2.42

Cite the Following Article

Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)
Michael Roos, Benedikt Uhl, Daniela Künzel, Harry E. Hoster, Axel Groß and R. Jürgen Behm
Beilstein J. Nanotechnol. 2011, 2, 365–373. https://doi.org/10.3762/bjnano.2.42

How to Cite

Roos, M.; Uhl, B.; Künzel, D.; Hoster, H. E.; Groß, A.; Behm, R. J. Beilstein J. Nanotechnol. 2011, 2, 365–373. doi:10.3762/bjnano.2.42

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Guo, H.; Martínez-Galera, A. J.; Gómez-Rodríguez, J. M. Molecular properties of PTCDA on graphene grown on a rectangular symmetry substrate. Applied Surface Science 2023, 620, 156777. doi:10.1016/j.apsusc.2023.156777
  • Díaz, C.; Calleja, F.; Vázquez de Parga, A. L.; Martín, F. Graphene grown on transition metal substrates: Versatile templates for organic molecules with new properties and structures. Surface Science Reports 2022, 77, 100575. doi:10.1016/j.surfrep.2022.100575
  • Salvalaglio, M.; Elder, K. R. Coarse-grained modeling of crystals by the amplitude expansion of the phase-field crystal model: an overview. Modelling and Simulation in Materials Science and Engineering 2022, 30, 53001–053001. doi:10.1088/1361-651x/ac681e
  • Chen, Z.; Wang, J.; Cao, N.; Wang, Y.; Li, H.; Rooij, N. F. d.; Umar, A.; Feng, Y.; French, P. J.; Zhou, G. Three-Dimensional Graphene-Based Foams with "Greater Electron Transferring Areas" Deriving High Gas Sensitivity. ACS Applied Nano Materials 2021, 4, 13234–13245. doi:10.1021/acsanm.1c02759
  • Vélez, P.; del Carmen Rojas, M.; Velasco, J. J.; Para, M. L.; Barraco, D. E.; Leiva, E. P. M.; Luque, G. L. On the role of oxidized graphene interfaces in lithium sulfur batteries: Thermodynamic and kinetic aspects using density functional theory. Applied Surface Science 2021, 550, 149358. doi:10.1016/j.apsusc.2021.149358
  • Lima, M. P.; Miwa, R. H.; Fazzio, A. The role played by the molecular geometry on the electronic transport through nanometric organic films. Physical chemistry chemical physics : PCCP 2019, 21, 24584–24591. doi:10.1039/c9cp04304g
  • Vélez, P.; Para, M. L.; Luque, G. L.; Barraco, D. E.; Leiva, E. P. M. Modeling of substitutionally modified graphene structures to prevent the shuttle mechanism in lithium-sulfur batteries. Electrochimica Acta 2019, 309, 402–414. doi:10.1016/j.electacta.2019.04.062
  • Kamalakannan, S.; Prakash, M.; Al-Mogren, M. M.; Chambaud, G.; Hochlaf, M. Alkyl Methyl Imidazolium-Based Ionic Liquids at the Au(111) Surface: Anions and Alkyl Chain Cations Induced Interfacial Effects. The Journal of Physical Chemistry C 2019, 123, 15087–15098. doi:10.1021/acs.jpcc.9b03242
  • Schmidt, N.; Li, J.; Gottardi, S.; Moreno-López, J. C.; Enache, M.; Monjas, L.; van der Vlag, R.; Havenith, R. W. A.; Hirsch, A. K. H.; Stöhr, M. Comparing the Self‐Assembly of Sexiphenyl‐Dicarbonitrile on Graphite and Graphene on Cu(111). Chemistry (Weinheim an der Bergstrasse, Germany) 2019, 25, 5065–5070. doi:10.1002/chem.201806312
  • Martínez-Galera, A. J.; Gómez-Rodríguez, J. M. Structural and Electronic Properties of 3,4,9,10-Perylene Tetracarboxylic Dianhydride on h-BN/Rh(110). The Journal of Physical Chemistry C 2018, 123, 1866–1873. doi:10.1021/acs.jpcc.8b10810
  • Peyrot, D.; Silly, M. G.; Silly, F. X3 synthon geometries in two-dimensional halogen-bonded 1,3,5-tris(3,5-dibromophenyl)benzene self-assembled nanoarchitectures on Au(111)-(). Physical chemistry chemical physics : PCCP 2018, 20, 3918–3924. doi:10.1039/c7cp06488h
  • de Oliveira, J. B. B.; de Oliveira, I. S. S.; Padilha, J. E.; Miwa, R. H. Tunable magnetism and spin-polarized electronic transport in graphene mediated by molecular functionalization of extended defects. Physical Review B 2018, 97, 045107. doi:10.1103/physrevb.97.045107
  • Schmidt, N.; Stöhr, M. Molecular Self-Assembly on Graphene: The Role of the Substrate. Encyclopedia of Interfacial Chemistry; Elsevier, 2018; pp 110–119. doi:10.1016/b978-0-12-409547-2.14162-9
  • Tian, T.; Shih, C.-J. Molecular Epitaxy on Two-Dimensional Materials: The Interplay between Interactions. Industrial & Engineering Chemistry Research 2017, 56, 10552–10581. doi:10.1021/acs.iecr.7b02669
  • Chengyi, H.; Zhang, M.; Halder, A.; Chi, Q. Graphene directed architecture of fine engineered nanostructures with electrochemical applications. Electrochimica Acta 2017, 242, 202–218. doi:10.1016/j.electacta.2017.04.117
  • Chen, Z.; Wang, Y.; Shang, Y.; Umar, A.; Xie, P.; Qi, Q.; Zhou, G. One-Step Fabrication of Pyranine Modified- Reduced Graphene Oxide with Ultrafast and Ultrahigh Humidity Response. Scientific reports 2017, 7, 2713. doi:10.1038/s41598-017-02983-8
  • Kumar, A.; Banerjee, K.; Liljeroth, P. Molecular Assembly on Two-Dimensional Materials. Nanotechnology 2017, 28, 082001. doi:10.1088/1361-6528/aa564f
  • Zhang, L.; Roy, S. S.; Safron, N. S.; Shearer, M. J.; Jacobberger, R. M.; Saraswat, V.; Hamers, R. J.; Arnold, M. S.; Andrew, T. L. Orientation Control of Selected Organic Semiconductor Crystals Achieved by Monolayer Graphene Templates. Advanced Materials Interfaces 2016, 3, 1600621. doi:10.1002/admi.201600621
  • Ciesielski, A.; Samorì, P. Supramolecular Approaches to Graphene: From Self-Assembly to Molecule-Assisted Liquid-Phase Exfoliation. Advanced materials (Deerfield Beach, Fla.) 2016, 28, 6030–6051. doi:10.1002/adma.201505371
  • Veiga, R. G.; Miwa, R. H.; McLean, A. B. Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations. Physical Review B 2016, 93, 115301. doi:10.1103/physrevb.93.115301
Other Beilstein-Institut Open Science Activities