Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)

Christian Held, Thomas Seyller and Roland Bennewitz
Beilstein J. Nanotechnol. 2012, 3, 179–185. https://doi.org/10.3762/bjnano.3.19

Cite the Following Article

Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)
Christian Held, Thomas Seyller and Roland Bennewitz
Beilstein J. Nanotechnol. 2012, 3, 179–185. https://doi.org/10.3762/bjnano.3.19

How to Cite

Held, C.; Seyller, T.; Bennewitz, R. Beilstein J. Nanotechnol. 2012, 3, 179–185. doi:10.3762/bjnano.3.19

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Solomenko, A.; Balabai, R.; Radchenko, T.; Tatarenko, V. Functionalization of Quasi-Two-Dimensional Materials: Chemical and Strain-Induced Modifications. Progress in Physics of Metals 2022, 23, 147–238. doi:10.15407/ufm.23.02.147
  • Sahalianov, I. Y.; Radchenko, T. M.; Tatarenko, V. A.; Cuniberti, G. Sensitivity to strains and defects for manipulating the conductivity of graphene. Europhysics Letters 2020, 132, 48002. doi:10.1209/0295-5075/132/48002
  • Radchenko, T. M.; Sahalianov, I.; Tatarenko, V. A.; Prylutskyy, Y.; Szroeder, P.; Kempiński, M.; Kempiński, W. Handbook of Graphene; Wiley, 2019; pp 451–502. doi:10.1002/9781119468455.ch14
  • Sahalianov, I. Y.; Radchenko, T. M.; Tatarenko, V. A.; Prylutskyy, Y. I. Magnetic field-, strain-, and disorder-induced responses in an energy spectrum of graphene. Annals of Physics 2018, 398, 80–93. doi:10.1016/j.aop.2018.09.004
  • Motta, N. Nanostructures for sensors, electronics, energy and environment III. Beilstein journal of nanotechnology 2017, 8, 1530–1531. doi:10.3762/bjnano.8.154
  • Shatil, N.; Homer, M.; Picco, L.; Martin, P. G.; Payton, O. D. A Calibration Method for the Higher Modes of a Micro-mechanical Cantilever. Applied Physics Letters 2017, 110, 223101. doi:10.1063/1.4984222
  • Wang, C.; Nakahara, H.; Saito, Y. In situ SEM/STM observations and growth control of monolayer graphene on SiC (0001) wide terraces. Surface and Interface Analysis 2016, 48, 1221–1225. doi:10.1002/sia.6098
  • Morán-Meza, J. A.; Cousty, J.; Lubin, C.; Thoyer, F. Understanding the STM images of epitaxial graphene on a reconstructed 6H-SiC(0001) surface: the role of tip-induced mechanical distortion of graphene. Physical chemistry chemical physics : PCCP 2016, 18, 14264–14272. doi:10.1039/c5cp07571h
  • Orlof, A.; Shylau, A.; Zozoulenko, I. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field. Physical Review B 2015, 92, 075431. doi:10.1103/physrevb.92.075431
  • Telychko, M.; Berger, J.; Majzik, Z.; Jelínek, P.; Švec, M. Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature. Beilstein journal of nanotechnology 2015, 6, 901–906. doi:10.3762/bjnano.6.93
  • Meza, J. A. M.; Lubin, C.; Thoyer, F.; Cousty, J. Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H-SiC(0001) surface during scanning tunneling and atomic force microscopy studies. Nanotechnology 2015, 26, 255704. doi:10.1088/0957-4484/26/25/255704
  • Radchenko, T. M.; Shylau, A.; Zozoulenko, I. Conductivity of epitaxial and CVD graphene with correlated line defects. Solid State Communications 2014, 195, 88–94. doi:10.1016/j.ssc.2014.07.012
  • Gajewski, K.; Kopiec, D.; Moczała, M.; Piotrowicz, A.; Zielony, M.; Wielgoszewski, G.; Gotszalk, T.; Strupiński, W. Scanning probe microscopy investigations of the electrical properties of chemical vapor deposited graphene grown on a 6H-SiC substrate. Micron (Oxford, England : 1993) 2014, 68, 17–22. doi:10.1016/j.micron.2014.08.005
  • Ochedowski, O.; Osmani, O.; Schade, M.; Bussmann, B. K.; Ban-d'Etat, B.; Lebius, H.; Schleberger, M. Graphitic nanostripes in silicon carbide surfaces created by swift heavy ion irradiation. Nature communications 2014, 5, 3913. doi:10.1038/ncomms4913
  • Temmen, M.; Ochedowski, O.; Bussmann, B. K.; Schleberger, M.; Reichling, M.; Bollmann, T. R. J. Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification. Beilstein journal of nanotechnology 2013, 4, 625–631. doi:10.3762/bjnano.4.69
  • Druga, T.; Wenderoth, M.; Lüpke, F.; Ulbrich, R. G. Graphene-metal contact resistivity on semi-insulating 6H-SiC(0001) measured with Kelvin probe force microscopy. Applied Physics Letters 2013, 103, 051601. doi:10.1063/1.4816955
  • Cohen, G.; Halpern, E.; Nanayakkara, S. U.; Luther, J. M.; Held, C.; Bennewitz, R.; Boag, A.; Rosenwaks, Y. Reconstruction of surface potential from Kelvin probe force microscopy images. Nanotechnology 2013, 24, 295702. doi:10.1088/0957-4484/24/29/295702
  • Wählisch, F. C.; Hoth, J.; Held, C.; Seyller, T.; Bennewitz, R. Friction and atomic-layer-scale wear of graphitic lubricants on SiC(0001) in dry sliding. Wear 2013, 300, 78–81. doi:10.1016/j.wear.2013.01.108
  • Motta, N. Nanostructures for sensors, electronics, energy and environment. Beilstein journal of nanotechnology 2012, 3, 351–352. doi:10.3762/bjnano.3.40
Other Beilstein-Institut Open Science Activities