Noncontact atomic force microscopy

  1. editorImage
  1. Editor: Prof. Udo D. Schwarz
    Yale University

No other method has opened the door to progress in nanoscience and nanotechnology as much as the introduction of scanning probe methods did in the 1980s, since they offer a way to visualize the nanoworld. Since the beginnings, almost two decades ago, NC-AFM has evolved into a powerful method that is able not just to image surfaces, but also to quantify tip–sample forces and interaction potentials as well as to manipulate individual atoms on conductors, semiconductors, and insulators alike.

See also the Thematic Series:
Noncontact atomic force microscopy III

Noncontact atomic force microscopy II

Advanced atomic force microscopy techniques IV

  • Editorial
  • Published 29 Feb 2012
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 172–173, doi:10.3762/bjnano.3.17

  • Full Research Paper
  • Published 09 Jan 2012

  • PDF

  • Supp. Info
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 25–32, doi:10.3762/bjnano.3.3

qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution

  1. Maximilian Schneiderbauer,
  2. Daniel Wastl and
  3. Franz J. Giessibl
  • Letter
  • Published 29 Feb 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 174–178, doi:10.3762/bjnano.3.18

Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)

  1. Christian Held,
  2. Thomas Seyller and
  3. Roland Bennewitz
  • Full Research Paper
  • Published 29 Feb 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 179–185, doi:10.3762/bjnano.3.19

Molecular-resolution imaging of pentacene on KCl(001)

  1. Julia L. Neff,
  2. Jan Götzen,
  3. Enhui Li,
  4. Michael Marz and
  5. Regina Hoffmann-Vogel
  • Full Research Paper
  • Published 29 Feb 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 186–191, doi:10.3762/bjnano.3.20

Noncontact atomic force microscopy study of the spinel MgAl2O4(111) surface

  1. Morten K. Rasmussen,
  2. Kristoffer Meinander,
  3. Flemming Besenbacher and
  4. Jeppe V. Lauritsen
  • Full Research Paper
  • Published 06 Mar 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 192–197, doi:10.3762/bjnano.3.21

  • Full Research Paper
  • Published 07 Mar 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 198–206, doi:10.3762/bjnano.3.22

  • Full Research Paper
  • Published 08 Mar 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 207–212, doi:10.3762/bjnano.3.23

An NC-AFM and KPFM study of the adsorption of a triphenylene derivative on KBr(001)

  1. Antoine Hinaut,
  2. Adeline Pujol,
  3. Florian Chaumeton,
  4. David Martrou,
  5. André Gourdon and
  6. Sébastien Gauthier
  • Full Research Paper
  • Published 12 Mar 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 221–229, doi:10.3762/bjnano.3.25

Modeling noncontact atomic force microscopy resolution on corrugated surfaces

  1. Kristen M. Burson,
  2. Mahito Yamamoto and
  3. William G. Cullen
  • Full Research Paper
  • Published 13 Mar 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 230–237, doi:10.3762/bjnano.3.26

  • Full Research Paper
  • Published 14 Mar 2012

  • PDF

  • Supp. Info
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 238–248, doi:10.3762/bjnano.3.27

Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique

  1. Zsolt Majzik,
  2. Martin Setvín,
  3. Andreas Bettac,
  4. Albrecht Feltz,
  5. Vladimír Cháb and
  6. Pavel Jelínek
  • Full Research Paper
  • Published 15 Mar 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 249–259, doi:10.3762/bjnano.3.28

  • Full Research Paper
  • Published 19 Mar 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 260–266, doi:10.3762/bjnano.3.29

Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

  1. Fredy Mesa,
  2. William Chamorro,
  3. William Vallejo,
  4. Robert Baier,
  5. Thomas Dittrich,
  6. Alexander Grimm,
  7. Martha C. Lux-Steiner and
  8. Sascha Sadewasser
  • Full Research Paper
  • Published 23 Mar 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 277–284, doi:10.3762/bjnano.3.31

Dipole-driven self-organization of zwitterionic molecules on alkali halide surfaces

  1. Laurent Nony,
  2. Franck Bocquet,
  3. Franck Para,
  4. Frédéric Chérioux,
  5. Eric Duverger,
  6. Frank Palmino,
  7. Vincent Luzet and
  8. Christian Loppacher
  • Full Research Paper
  • Published 27 Mar 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 285–293, doi:10.3762/bjnano.3.32

  • Full Research Paper
  • Published 29 Mar 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 294–300, doi:10.3762/bjnano.3.33

Graphite, graphene on SiC, and graphene nanoribbons: Calculated images with a numerical FM-AFM

  1. Fabien Castanié,
  2. Laurent Nony,
  3. Sébastien Gauthier and
  4. Xavier Bouju
  • Full Research Paper
  • Published 02 Apr 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 301–311, doi:10.3762/bjnano.3.34

Models of the interaction of metal tips with insulating surfaces

  1. Thomas Trevethan,
  2. Matthew Watkins and
  3. Alexander L. Shluger
  • Full Research Paper
  • Published 13 Apr 2012

  • PDF
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 329–335, doi:10.3762/bjnano.3.37

Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

  1. Miriam Jaafar,
  2. David Martínez-Martín,
  3. Mariano Cuenca,
  4. John Melcher,
  5. Arvind Raman and
  6. Julio Gómez-Herrero
  • Full Research Paper
  • Published 18 Apr 2012

  • PDF

  • Supp. Info
Graphical Abstract

Beilstein J. Nanotechnol. 2012, 3, 336–344, doi:10.3762/bjnano.3.38

Other Beilstein-Institut Open Science Activities

Keep Informed

RSS Feed

Subscribe to our Latest Articles RSS Feed.

Subscribe

Follow the Beilstein-Institut

LinkedIn

Twitter: @BeilsteinInst