Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy

Joachim Welker, Esther Illek and Franz J. Giessibl
Beilstein J. Nanotechnol. 2012, 3, 238–248. https://doi.org/10.3762/bjnano.3.27

Supporting Information

Supporting Information File 1: Implementation of the Sader–Jarvis and the matrix force deconvolution algorithm in MATLAB [20].
Format: ZIP Size: 2.3 KB Download

Cite the Following Article

Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy
Joachim Welker, Esther Illek and Franz J. Giessibl
Beilstein J. Nanotechnol. 2012, 3, 238–248. https://doi.org/10.3762/bjnano.3.27

How to Cite

Welker, J.; Illek, E.; Giessibl, F. J. Beilstein J. Nanotechnol. 2012, 3, 238–248. doi:10.3762/bjnano.3.27

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ventura-Macias, E.; Romero-Muñiz, C.; González-Sánchez, P.; Pou, P.; Pérez, R. Are High Resolution Atomic Force Microscopy images proportional to the force gradient or the force maps?. Applied Surface Science 2023, 634, 157558. doi:10.1016/j.apsusc.2023.157558
  • Walter, K.; Bourquin, J.; Amiri, A.; Scheer, N.; Dehnert, M.; Eichhorn, A. L.; Dietz, C. Probing local lateral forces of focal adhesions and cell-cell junctions of living cells by torsional force spectroscopy. Soft matter 2023, 19, 4772–4779. doi:10.1039/d2sm01685k
  • Liu, H.; Ahmed, Z.; Vranjkovic, S.; Parschau, M.; Mandru, A.-O.; Hug, H. J. A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy. Beilstein journal of nanotechnology 2022, 13, 1120–1140. doi:10.3762/bjnano.13.95
  • Rahe, P.; Heile, D.; Olbrich, R.; Reichling, M. Quantitative dynamic force microscopy with inclined tip oscillation. Beilstein journal of nanotechnology 2022, 13, 610–619. doi:10.3762/bjnano.13.53
  • Mallada, B.; Gallardo, A.; Lamanec, M.; de la Torre, B.; Špirko, V.; Hobza, P.; Jelínek, P. Real-space imaging of anisotropic charge of σ-hole by means of Kelvin probe force microscopy. Science (New York, N.Y.) 2021, 374, 863–867. doi:10.1126/science.abk1479
  • Mallada, B.; Gallardo, A.; Lamanec, M.; de la Torre, B.; Špirko, V.; Hobza, P.; Jelínek, P. Real-space imaging of {\sigma}-hole by means of Kelvin probe force microscopy with subatomic resolution. 2021.
  • Kim, S.; Ko, J.-H.; Jhe, W. Universal Theory of Dynamic Force Microscopy for Exact and Robust Force Reconstruction Using Multiharmonic Signal Analysis. Physical review letters 2021, 126, 076804. doi:10.1103/physrevlett.126.076804
  • Heile, D.; Olbrich, R.; Reichling, M.; Rahe, P. Alignment method for the accurate and precise quantification of tip-surface forces. Physical Review B 2021, 103, 075409. doi:10.1103/physrevb.103.075409
  • Sader, J. E. The automation of robust interatomic-force measurements. The Review of scientific instruments 2020, 91, 103702. doi:10.1063/5.0018599
  • Huber, F.; Giessibl, F. J. Experimental demonstration of pitfalls and remedies for precise force deconvolution in frequency-modulation atomic force microscopy. Journal of Applied Physics 2020, 127, 184301. doi:10.1063/5.0003291
  • Chan, N.; Lin, C.; Jacobs, T. D. B.; Carpick, R. W.; Egberts, P. Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy. Beilstein journal of nanotechnology 2020, 11, 729–739. doi:10.3762/bjnano.11.60
  • Seeholzer, T.; Gretz, O.; Giessibl, F. J.; Weymouth, A. J. A Fourier method for estimating potential energy and lateral forces from frequency-modulation lateral force microscopy data. New Journal of Physics 2019, 21, 083007. doi:10.1088/1367-2630/ab3353
  • Miyato, Y.; Otani, K.; Maeda, M.; Nagashima, K.; Abe, M. Investigating ice surfaces formed near the freezing point in the vapor phase via atomic force microscopy. Japanese Journal of Applied Physics 2019, 58, SIIA09. doi:10.7567/1347-4065/ab203d
  • Giessibl, F. J. The qPlus sensor, a powerful core for the atomic force microscope. The Review of scientific instruments 2019, 90, 011101. doi:10.1063/1.5052264
  • Sader, J. E.; Hughes, B. D.; Huber, F.; Giessibl, F. J. Interatomic force laws that corrupt their own measurement. Nature nanotechnology 2018, 13, 1088–1091. doi:10.1038/s41565-018-0277-x
  • Rashidi, M.; Vine, W.; Dienel, T.; Livadaru, L.; Retallick, J.; Huff, T.; Walus, K.; Wolkow, R. A. Initiating and Monitoring the Evolution of Single Electrons Within Atom-Defined Structures. Physical review letters 2018, 121, 166801. doi:10.1103/physrevlett.121.166801
  • Xing, Y.; Xu, M.; Gui, X.; Cao, Y.; Babel, B.; Rudolph, M.; Weber, S. A. L.; Kappl, M.; Butt, H.-J. The application of atomic force microscopy in mineral flotation. Advances in colloid and interface science 2018, 256, 373–392. doi:10.1016/j.cis.2018.01.004
  • Dietz, C. Sensing in-plane nanomechanical surface and sub-surface properties of polymers: local shear stress as function of the indentation depth. Nanoscale 2017, 10, 460–468. doi:10.1039/c7nr07147g
  • Kawai, S.; Nishiuchi, T.; Kodama, T.; Spijker, P.; Pawlak, R.; Meier, T.; Tracey, J.; Kubo, T.; Meyer, E.; Foster, A. S. Direct quantitative measurement of the C═O⋅⋅⋅H-C bond by atomic force microscopy. Science advances 2017, 3, 1–6. doi:10.1126/sciadv.1603258
  • Peronio, A.; Giessibl, F. J. Attempts to test an alternative electrodynamic theory of superconductors by low-temperature scanning tunneling and atomic force microscopy. Physical Review B 2016, 94, 094503. doi:10.1103/physrevb.94.094503
Other Beilstein-Institut Open Science Activities