Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

Miriam Jaafar, David Martínez-Martín, Mariano Cuenca, John Melcher, Arvind Raman and Julio Gómez-Herrero
Beilstein J. Nanotechnol. 2012, 3, 336–344.

Supporting Information

Supporting Information File 1: DAM images of relevant technological samples.
Format: PDF Size: 366.2 KB Download
Supporting Information File 2: Dynamic response in DAM-AFM.
Format: PDF Size: 247.7 KB Download
Supporting Information File 3: Handling instabilities with AM and DAM.
Format: PDF Size: 146.4 KB Download

Cite the Following Article

Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids
Miriam Jaafar, David Martínez-Martín, Mariano Cuenca, John Melcher, Arvind Raman and Julio Gómez-Herrero
Beilstein J. Nanotechnol. 2012, 3, 336–344.

How to Cite

Jaafar, M.; Martínez-Martín, D.; Cuenca, M.; Melcher, J.; Raman, A.; Gómez-Herrero, J. Beilstein J. Nanotechnol. 2012, 3, 336–344. doi:10.3762/bjnano.3.38

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Andany, S. H.; Hlawacek, G.; Hummel, S.; Brillard, C.; Kangül, M.; Fantner, G. E. An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization. Beilstein journal of nanotechnology 2020, 11, 1272–1279. doi:10.3762/bjnano.11.111
  • Manzanares-Negro, Y.; Ares, P.; Jaafar, M.; Lopez-Polin, G.; Gómez-Navarro, C.; Gómez-Herrero, J. Improved Graphene Blisters by Ultrahigh Pressure Sealing. ACS applied materials & interfaces 2020, 12, 37750–37756. doi:10.1021/acsami.0c09765
  • Jaafar, M.; Pablo-Navarro, J.; Berganza, E.; Ares, P.; Magén, C.; Masseboeuf, A.; Gatel, C.; Snoeck, E.; Gómez-Herrero, J.; de Teresa, J. M.; Asenjo, A. Customized MFM probes based on magnetic nanorods. Nanoscale 2020, 12, 10090–10097. doi:10.1039/d0nr00322k
  • Amrein, M. W.; Stamov, D. Atomic Force Microscopy in the Life Sciences. Springer Handbook of Microscopy; Springer International Publishing, 2019; pp 1469–1505. doi:10.1007/978-3-030-00069-1_31
  • Kazakova, O.; Puttock, R.; Barton, C.; Corte-León, H.; Jaafar, M.; Neu, V.; Asenjo, A. Frontiers of magnetic force microscopy. Journal of Applied Physics 2019, 125, 060901. doi:10.1063/1.5050712
  • Ares, P.; Gómez-Herrero, J.; Moreno-Herrero, F. High-Resolution Atomic Force Microscopy Imaging of Nucleic Acids. Methods in molecular biology (Clifton, N.J.) 2018, 1814, 3–17. doi:10.1007/978-1-4939-8591-3_1
  • Wu, X.; Hao, Z.; Wu, D.; Zheng, L.; Jiang, Z.; Ganesan, V.; Wang, Y.; Lai, K. Quantitative Measurements of Nanoscale Permittivity and Conductivity Using Tuning-fork-based Microwave Impedance Microscopy. The Review of scientific instruments 2018, 89, 043704. doi:10.1063/1.5022997
  • Stoica, I.; Barzic, A. I.; Hulubei, C. Fabrication of nanochannels on polyimide films using dynamic plowing lithography. Applied Surface Science 2017, 426, 307–314. doi:10.1016/j.apsusc.2017.07.214
  • Krivoshapkina, Y.; Kaestner, M.; Lenk, C.; Lenk, S.; Rangelow, I. W. Low-energy electron exposure of ultrathin polymer films with scanning probe lithography. Microelectronic Engineering 2017, 177, 78–86. doi:10.1016/j.mee.2017.02.021
  • Almonte, L.; Colchero, J. True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast. Nanoscale 2017, 9, 2903–2915. doi:10.1039/c6nr07967a
  • Rodriguez-Ramos, J.; Perrino, A. P.; Garcia, R. Dependence of the volume of an antibody on the force applied in a force microscopy experiment in liquid. Ultramicroscopy 2016, 171, 153–157. doi:10.1016/j.ultramic.2016.09.007
  • Senesi, G. S.; Massaro, A.; Galiano, A.; Pellicani, L. Advanced Materials Interfaces; Wiley, 2016; pp 127–147. doi:10.1002/9781119242604.ch4
  • Ares, P.; Fuentes-Perez, M. E.; Herrero-Galán, E.; Valpuesta, J. M.; Gil, A.; Gómez-Herrero, J.; Moreno-Herrero, F. High resolution atomic force microscopy of double-stranded RNA. Nanoscale 2016, 8, 11818–11826. doi:10.1039/c5nr07445b
  • Perrino, A. P.; Garcia, R. How soft is a single protein? The stress–strain curve of antibody pentamers with 5 pN and 50 pm resolutions. Nanoscale 2016, 8, 9151–9158. doi:10.1039/c5nr07957h
  • Torrens, F.; Castellano, G. Cluster Origin of Solvation Features of C-Nanostructures in Organic Solvents. Advances in Medical Technologies and Clinical Practice; IGI Global, 2016; pp 189–293. doi:10.4018/978-1-5225-0248-7.ch008
  • Ares, P.; Jaafar, M.; Gil, A.; Gómez-Herrero, J.; Asenjo, A. Magnetic Force Microscopy in Liquids. Small (Weinheim an der Bergstrasse, Germany) 2015, 11, 4731–4736. doi:10.1002/smll.201500874
  • Nievergelt, A. P.; Adams, J. D.; Odermatt, P. D.; Fantner, G. E. High-frequency multimodal atomic force microscopy. Beilstein journal of nanotechnology 2014, 5, 2459–2467. doi:10.3762/bjnano.5.255
  • Parent, L. R.; Robinson, D. B.; Cappillino, P. J.; Hartnett, R. J.; Abellan, P.; Evans, J. E.; Browning, N. D.; Arslan, I. In Situ Observation of Directed Nanoparticle Aggregation During the Synthesis of Ordered Nanoporous Metal in Soft Templates. Chemistry of Materials 2014, 26, 1426–1433. doi:10.1021/cm4035209
  • Martinez-Martin, D.; Longuinhos, R.; Izquierdo, J. G.; Marele, A. C.; Alexandre, S. S.; Jaafar, M.; Gómez-Rodríguez, J. M.; Bañares, L.; Soler, J. M.; Gómez-Herrero, J. Atmospheric contaminants on graphitic surfaces. Carbon 2013, 61, 33–39. doi:10.1016/j.carbon.2013.04.056
  • Dufrêne, Y. F.; Martinez-Martin, D.; Medalsy, I.; Alsteens, D.; Müller, D. J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nature methods 2013, 10, 847–854. doi:10.1038/nmeth.2602
Other Beilstein-Institut Open Science Activities