Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry

Sushil Kumar and Victoria Vicente-Beckett
Beilstein J. Nanotechnol. 2012, 3, 388–396. https://doi.org/10.3762/bjnano.3.45

Cite the Following Article

Glassy carbon electrodes modified with multiwalled carbon nanotubes for the determination of ascorbic acid by square-wave voltammetry
Sushil Kumar and Victoria Vicente-Beckett
Beilstein J. Nanotechnol. 2012, 3, 388–396. https://doi.org/10.3762/bjnano.3.45

How to Cite

Kumar, S.; Vicente-Beckett, V. Beilstein J. Nanotechnol. 2012, 3, 388–396. doi:10.3762/bjnano.3.45

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mutić, S.; Stanković, D.; Kónya, Z.; Anojčić, J. Facile immobilization of cholesterol oxidase on Pt,Ru-C nanocomposite and ionic liquid-modified carbon paste electrode for an efficient amperometric free cholesterol biosensing. Analytical and bioanalytical chemistry 2023, 415, 5709–5722. doi:10.1007/s00216-023-04847-9
  • Chelmea, L.; Badea, M.; Scarneciu, I.; Moga, M. A.; Dima, L.; Restani, P.; Murdaca, C.; Ciurescu, D.; Gaman, L. E. New Trends in Uric Acid Electroanalysis. Chemosensors 2023, 11, 341. doi:10.3390/chemosensors11060341
  • Stojanov, L.; Mirčeski, V. A Theoretical and Experimental Square-Wave Voltammetric Study of Ascorbic Acid in Light of Multi-Step Electron Transfer Mechanism. Journal of The Electrochemical Society 2023, 170, 65504–065504. doi:10.1149/1945-7111/ace030
  • Grabarczyk, M.; Wlazłowska, E.; Adamczyk, M. Carbon nanotubes as a suitable material for electrochemical sensor used in voltammetric determinations of titanium. Applied Nanoscience 2023, 13, 6841–6848. doi:10.1007/s13204-023-02791-9
  • Garg, S.; Mishra, V.; Vega, L. F.; Sharma, R. S.; Dumée, L. F. Hydrogen Biosensing: Prospects, Parallels, and Challenges. Industrial & Engineering Chemistry Research 2023, 62, 4676–4693. doi:10.1021/acs.iecr.2c03965
  • Škugor Rončević, I.; Skroza, D.; Vrca, I.; Kondža, A. M.; Vladislavić, N. Development and Optimization of Electrochemical Method for Determination of Vitamin C. Chemosensors 2022, 10, 283. doi:10.3390/chemosensors10070283
  • Raj, N.; Crooks, R. M. Detection Efficiency of Ag Nanoparticle Labels for a Heart Failure Marker Using Linear and Square-Wave Anodic Stripping Voltammetry. Biosensors 2022, 12, 203. doi:10.3390/bios12040203
  • Makwakwa, T. A.; Mafa, P. J.; Nyoni, H.; Msagati, T. A. M. Optimization of Square Wave Voltammetry (SWV) Parameters by Design of Experiment (DoE) Methodologies for the Determination of Mifepristone at Glassy Carbon Electrode (GCE). Electroanalysis 2022, 34, 1103–1113. doi:10.1002/elan.202100383
  • Acevedo Restrepo, I.; Blandón Naranjo, L.; Hoyos-Arbeláez, J.; Víctor Vázquez, M.; Gutiérrez Granados, S.; Palacio, J. Electrochemical determination of Saccharomyces cerevisiae sp using glassy carbon electrodes modified with oxidized multi-walled carbon nanotubes dispersed in water -Nafion®. Current research in food science 2022, 5, 351–359. doi:10.1016/j.crfs.2022.01.022
  • Salamanca-Neto, C. A. R.; Olean-Oliveira, A.; Scremin, J.; Ceravolo, G. S.; Dekker, R. F.; Barbosa-Dekker, A. M.; Teixeira, M. F.; Sartori, E. R. Carboxymethyl-botryosphaeran stabilized carbon nanotubes aqueous dispersion: A new platform design for electrochemical sensing of desloratadine. Talanta 2019, 210, 120642. doi:10.1016/j.talanta.2019.120642
  • Pandey, S.; Sachan, S.; Singh, S. K. Ultra-trace sensing of cadmium and lead by square wave anodic stripping voltammetry using ionic liquid modified graphene oxide. Materials Science for Energy Technologies 2019, 2, 667–675. doi:10.1016/j.mset.2019.09.004
  • Oliveira, A. E. F.; Bettio, G. B.; Pereira, A. C. An Electrochemical Sensor Based on Electropolymerization of ß‐Cyclodextrin and Reduced Graphene Oxide on a Glassy Carbon Electrode for Determination of Neonicotinoids. Electroanalysis 2018, 30, 1918–1928. doi:10.1002/elan.201800236
  • Amirighadi, S.; Raoof, J.-B.; Chekin, F.; Ojani, R. A sensitive voltammetric detection of pramipexole based on 1,1,3,3-tetramethyldisilazanecarbon nanotube modified electrode. Materials science & engineering. C, Materials for biological applications 2017, 75, 784–790. doi:10.1016/j.msec.2017.02.072
  • Ugliano, M. Rapid fingerprinting of white wine oxidizable fraction and classification of white wines using disposable screen printed sensors and derivative voltammetry. Food chemistry 2016, 212, 837–843. doi:10.1016/j.foodchem.2016.05.156
  • Mirčeski, V.; Smarzewska, S.; Guziejewski, D. Measuring the Electrode Kinetics of Vitamin B2 at a Constant Time Window of a Square Wave Voltammetric Experiment. Electroanalysis 2015, 28, 385–393. doi:10.1002/elan.201500335
  • Chillawar, R. R.; Tadi, K. K.; Motghare, R. V. Voltammetric techniques at chemically modified electrodes. Journal of Analytical Chemistry 2015, 70, 399–418. doi:10.1134/s1061934815040152
  • Lesch, A.; Cortés-Salazar, F.; Amstutz, V.; Tacchini, P.; Girault, H. H. Inkjet printed nanohydrogel coated carbon nanotubes electrodes for matrix independent sensing. Analytical chemistry 2015, 87, 1026–1033. doi:10.1021/ac503748g
  • Tsierkezos, N. G.; Ritter, U.; Thaha, Y. N.; Downing, C.; Szroeder, P. Synthesis, characterization, and electrochemical application of phosphorus-doped multi-walled carbon nanotubes. Journal of Solid State Electrochemistry 2014, 19, 891–905. doi:10.1007/s10008-014-2696-4
  • Guziejewski, D.; Mirčeski, V.; Jadreško, D. Measuring the Electrode Kinetics of Surface Confined Electrode Reactions at a Constant Scan Rate. Electroanalysis 2014, 27, 67–73. doi:10.1002/elan.201400349
  • Mirčeski, V.; Gulaboski, R. RECENT ACHIEVEMENTS IN SQUARE-WAVE VOLTAMMETRY (A REVIEW). Macedonian Journal of Chemistry and Chemical Engineering 2014, 33, 1–12.
Other Beilstein-Institut Open Science Activities