Channeling in helium ion microscopy: Mapping of crystal orientation

Vasilisa Veligura, Gregor Hlawacek, Raoul van Gastel, Harold J. W. Zandvliet and Bene Poelsema
Beilstein J. Nanotechnol. 2012, 3, 501–506. https://doi.org/10.3762/bjnano.3.57

Cite the Following Article

Channeling in helium ion microscopy: Mapping of crystal orientation
Vasilisa Veligura, Gregor Hlawacek, Raoul van Gastel, Harold J. W. Zandvliet and Bene Poelsema
Beilstein J. Nanotechnol. 2012, 3, 501–506. https://doi.org/10.3762/bjnano.3.57

How to Cite

Veligura, V.; Hlawacek, G.; van Gastel, R.; Zandvliet, H. J. W.; Poelsema, B. Beilstein J. Nanotechnol. 2012, 3, 501–506. doi:10.3762/bjnano.3.57

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Höflich, K.; Hobler, G.; Allen, F. I.; Wirtz, T.; Rius, G.; McElwee-White, L.; Krasheninnikov, A. V.; Schmidt, M.; Utke, I.; Klingner, N.; Osenberg, M.; Córdoba, R.; Djurabekova, F.; Manke, I.; Moll, P.; Manoccio, M.; De Teresa, J. M.; Bischoff, L.; Michler, J.; De Castro, O.; Delobbe, A.; Dunne, P.; Dobrovolskiy, O. V.; Frese, N.; Gölzhäuser, A.; Mazarov, P.; Koelle, D.; Möller, W.; Pérez-Murano, F.; Philipp, P.; Vollnhals, F.; Hlawacek, G. Roadmap for focused ion beam technologies. Applied Physics Reviews 2023, 10. doi:10.1063/5.0162597
  • Fan, C.; Zhao, S.; Pan, S.; He, B.; Huang, M. Helium radiation blistering mechanisms in tungsten: Ion channeling effects. Materialia 2023, 27, 101664. doi:10.1016/j.mtla.2022.101664
  • Balooch, M.; Allen, F.; Popovic, M.; Hosemann, P. Mechanical and structural transformations of tungsten implanted with helium ions. Journal of Nuclear Materials 2022, 559, 153436. doi:10.1016/j.jnucmat.2021.153436
  • Tabean, S.; Mousley, M.; Pauly, C.; De Castro, O.; Serralta, E.; Klingner, N.; Mücklich, F.; Hlawacek, G.; Wirtz, T.; Eswara, S. Quantitative nanoscale imaging using transmission He ion channelling contrast: Proof-of-concept and application to study isolated crystalline defects. Ultramicroscopy 2021, 233, 113439. doi:10.1016/j.ultramic.2021.113439
  • Audinot, J.-N.; Philipp, P.; De Castro, O.; Biesemeier, A.; Hoang, Q. H.; Wirtz, T. Highest resolution chemical imaging based on secondary ion mass spectrometry performed on the helium ion microscope. Reports on progress in physics. Physical Society (Great Britain) 2021, 84, 105901. doi:10.1088/1361-6633/ac1e32
  • Frese, N.; Schmerer, P.; Wortmann, M.; Schürmann, M.; König, M.; Westphal, M.; Weber, F.; Sudhoff, H.; Gölzhäuser, A. Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy. Beilstein journal of nanotechnology 2021, 12, 172–179. doi:10.3762/bjnano.12.13
  • Serralta, E.; Klingner, N.; De Castro, O.; Mousley, M.; Eswara, S.; Pinto, S. D.; Wirtz, T.; Hlawacek, G. Scanning transmission imaging in the helium ion microscope using a microchannel plate with a delay line detector. Beilstein journal of nanotechnology 2020, 11, 1854–1864. doi:10.3762/bjnano.11.167
  • Gaderbauer, W.; Arndt, M.; Truglas, T.; Steck, T.; Klingner, N.; Stifter, D.; Faderl, J.; Groiss, H. Effects of alloying elements on surface oxides of hot–dip galvanized press hardened steel. Surface and Coatings Technology 2020, 404, 126466. doi:10.1016/j.surfcoat.2020.126466
  • Wong, C.-S.; Kolasinski, R.; Whaley, J. A. Quantitative investigation of surface structure and interatomic potential with impact-collision ion scattering spectroscopy. Journal of physics. Condensed matter : an Institute of Physics journal 2020, 33, 015001. doi:10.1088/1361-648x/abb897
  • Hlawacek, G. Ion Microscopy. Springer Handbook of Microscopy; Springer International Publishing, 2019; pp 677–714. doi:10.1007/978-3-030-00069-1_14
  • Hijazi, H.; Li, M.; Barbacci, D. C.; Schultz, A.; Thorpe, R.; Gustafsson, T.; Feldman, L. C. Channeling in the helium ion microscope. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2019, 456, 92–96. doi:10.1016/j.nimb.2019.07.002
  • Ghaderzadeh, S.; Ghorbani-Asl; Kretschmer, S.; Hlawacek, G.; Krasheninnikov, A. V. Channeling effects in gold nanoclusters under He ion irradiation: insights from molecular dynamics simulations. Nanotechnology 2019, 31, 035302. doi:10.1088/1361-6528/ab4847
  • Mousley, M.; Eswara, S.; De Castro, O.; Bouton, O.; Klingner, N.; Koch, C.; Hlawacek, G.; Wirtz, T. Stationary beam full-field transmission helium ion microscopy using sub-50 keV He+: Projected images and intensity patterns. Beilstein journal of nanotechnology 2019, 10, 1648–1657. doi:10.3762/bjnano.10.160
  • Lybrand, R. A.; Austin, J. C.; Fedenko, J.; Gallery, R. E.; Rooney, E.; Schroeder, P. A.; Zaharescu, D. G.; Qafoku, O. A coupled microscopy approach to assess the nano-landscape of weathering. Scientific reports 2019, 9, 5377. doi:10.1038/s41598-019-41357-0
  • Wirtz, T.; De Castro, O.; Audinot, J.-N.; Philipp, P. Imaging and Analytics on the Helium Ion Microscope. Annual review of analytical chemistry (Palo Alto, Calif.) 2019, 12, 523–543. doi:10.1146/annurev-anchem-061318-115457
  • van Kouwen, L. Introduction to focused ion beams, ion sources, and the nano-aperture ion source. Advances in Imaging and Electron Physics Including Proceedings CPO-10; Elsevier, 2019; Vol. 212, pp 181–216. doi:10.1016/bs.aiep.2019.09.001
  • Pöpsel, C.; Becker, J.; Jeon, N.; Döblinger, M.; Stettner, T.; Gottschalk, Y. T.; Loitsch, B.; Matich, S.; Altzschner, M.; Holleitner, A. W.; Finley, J. J.; Lauhon, L. J.; Koblmüller, G. He-Ion Microscopy as a High-Resolution Probe for Complex Quantum Heterostructures in Core–Shell Nanowires. Nano letters 2018, 18, 3911–3919. doi:10.1021/acs.nanolett.8b01282
  • Stehling, N.; Masters, R. C.; Zhou, Y.; O'Connell, R. F.; Holland, C.; Zhang, H.; Rodenburg, C. New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope. MRS Communications 2018, 8, 226–240. doi:10.1557/mrc.2018.75
  • Hujsak, K. A.; Myers, B. D.; Grovogui, J. A.; Dravid, V. P. Stage-Rocked Electron Channeling for Crystal Orientation Mapping. Scientific reports 2018, 8, 5175. doi:10.1038/s41598-018-23413-3
  • Wang, J.; Huang, S. H. Y.; Herrmann, C.; Scott, S. A.; Schiettekatte, F.; Kavanagh, K. L. Focussed helium ion channeling through Si nanomembranes. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2018, 36, 021203. doi:10.1116/1.5020667

Patents

  • DRAVID VINAYAK P; MYERS BENJAMIN; HUJSAK KARL A. Orientation determination and mapping by stage rocking electron channeling and imaging reconstruction. US 11454596 B2, Sept 27, 2022.
  • LANGLOIS CYRIL. Method for mapping crystal orientations in a sample made of a polycrystalline material. US 10062145 B2, Aug 28, 2018.
  • LANGLOIS CYRIL; DOUILLARD THIERRY; DUBAIL SÉBASTIEN. METHOD AND SYSTEM FOR GENERATING A THEORETICAL INTENSITY PROFILE OF A SINGLE-CRYSTAL MATERIAL WITH KNOWN CRYSTAL ORIENTATION. WO 2017093213 A1, June 8, 2017.
  • LANGLOIS CYRIL; DOUILLARD THIERRY; DUBAIL SEBASTIEN. PROCEDE ET SYSTEME POUR LA GENERATION D'UN PROFIL D'INTENSITES THEORIQUE D'UN MATERIAU MONOCRISTALLIN D'ORIENTATION CRISTALLINE CONNUE. FR 3044418 A1, June 2, 2017.
  • LANGLOIS CYRIL. METHOD FOR MAPPING CRYSTAL ORIENTATIONS IN A SAMPLE MADE OF A POLYCRYSTALLINE MATERIAL. US 20170011518 A1, Jan 12, 2017.
  • LANGLOIS CYRIL. METHOD FOR MAPPING CRYSTAL ORIENTATIONS IN A SAMPLE MADE OF A POLYCRYSTALLINE MATERIAL. WO 2015113898 A1, Aug 6, 2015.
Other Beilstein-Institut Open Science Activities