A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries

Wenyu Zhang, Yi Zeng, Chen Xu, Ni Xiao, Yiben Gao, Lain-Jong Li, Xiaodong Chen, Huey Hoon Hng and Qingyu Yan
Beilstein J. Nanotechnol. 2012, 3, 513–523. https://doi.org/10.3762/bjnano.3.59

Supporting Information

Raman spectrum, TGA results, SEM and HRTEM images and electrochemical performance figures.

Supporting Information File 1: Additional figures.
Format: PDF Size: 564.3 KB Download

Cite the Following Article

A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries
Wenyu Zhang, Yi Zeng, Chen Xu, Ni Xiao, Yiben Gao, Lain-Jong Li, Xiaodong Chen, Huey Hoon Hng and Qingyu Yan
Beilstein J. Nanotechnol. 2012, 3, 513–523. https://doi.org/10.3762/bjnano.3.59

How to Cite

Zhang, W.; Zeng, Y.; Xu, C.; Xiao, N.; Gao, Y.; Li, L.-J.; Chen, X.; Hng, H. H.; Yan, Q. Beilstein J. Nanotechnol. 2012, 3, 513–523. doi:10.3762/bjnano.3.59

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Rakibuddin, M.; Ananthakrishnan, R. MOF-derived Mn2O3-decorated MoS2-graphene composite for visible light–assisted degradation of environmentally hazardous penicillin G in water. New Journal of Chemistry 2024, 48, 4944–4952. doi:10.1039/d4nj00108g
  • Alathlawi, H. J.; Hassan, K. F. Review—Recent Advancements in Graphene-Based Electrodes for Lithium-Ion Batteries. ECS Journal of Solid State Science and Technology 2024, 13, 11002–011002. doi:10.1149/2162-8777/ad15a7
  • Safaeipour, S.; Kalantarian, M. M. Influence of graphene-based additives on behaviours of electrode materials of Li-ion batteries: A systematic evaluation. Journal of Energy Storage 2023, 74, 109525. doi:10.1016/j.est.2023.109525
  • Dasari, B. L.; Naher, S. Graphene Materials for Batteries. Encyclopedia of Smart Materials; Elsevier, 2022; pp 69–84. doi:10.1016/b978-0-12-815732-9.00036-x
  • Damma, D.; Pappas, D. K.; Boningari, T.; Smirniotis, P. G. Study of Ce, Sb, and Y exchanged titania nanotubes and superior catalytic performance for the selective catalytic reduction of NOx. Applied Catalysis B: Environmental 2021, 287, 119939. doi:10.1016/j.apcatb.2021.119939
  • Chen, X.; Tian, Y. Review of Graphene in Cathode Materials for Lithium-Ion Batteries. Energy & Fuels 2021, 35, 3572–3580. doi:10.1021/acs.energyfuels.0c04191
  • Kucinskis, G.; Bajars, G.; Bikova, K.; Kaprans, K.; Kleperis, J. Microstructural Influence on Electrochemical Properties of LiFePO4/C/Reduced Graphene Oxide Composite Cathode. Russian Journal of Electrochemistry 2019, 55, 517–523. doi:10.1134/s1023193519060120
  • Kwon, N. H.; Mouck-Makanda, D.; Fromm, K. M. A Review: Carbon Additives in LiMnPO4- and LiCoO2-Based Cathode Composites for Lithium Ion Batteries. Batteries 2018, 4, 50. doi:10.3390/batteries4040050
  • O'Malley, R.; Liu, L.; Depcik, C. Comparative study of various cathodes for lithium ion batteries using an enhanced Peukert capacity model. Journal of Power Sources 2018, 396, 621–631. doi:10.1016/j.jpowsour.2018.06.066
  • Zhang, R.; Zhu, H. Potential Applications and Perspectives. Graphene; Elsevier, 2018; pp 233–249. doi:10.1016/b978-0-12-812651-6.00010-0
  • Ejaz, A.; Jeon, S. A highly stable and sensitive GO-XDA-Mn2O3 electrochemical sensor for simultaneous electrooxidation of paracetamol and ascorbic acid. Electrochimica Acta 2017, 245, 742–751. doi:10.1016/j.electacta.2017.05.193
  • Zhou, J.; Zheng, C.; Wang, H.; Yang, J.; Hu, P.; Guo, L. 3D nest-shaped Sb2O3/RGO composite based high-performance lithium-ion batteries. Nanoscale 2016, 8, 17131–17135. doi:10.1039/c6nr06454j
  • Yan, X.; Jia, Y.; Chen, J.; Zhu, Z.; Yao, X. Defective-Activated-Carbon-Supported Mn-Co Nanoparticles as a Highly Efficient Electrocatalyst for Oxygen Reduction. Advanced materials (Deerfield Beach, Fla.) 2016, 28, 8771–8778. doi:10.1002/adma.201601651
  • Cui, K.; Hu, S.; Li, Y. Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries. Electrochimica Acta 2016, 210, 45–52. doi:10.1016/j.electacta.2016.05.099
  • Chu, Z.; Yue, C. Graphene oxide wrapped Na3V2(PO4)3/C nanocomposite as superior cathode material for sodium-ion batteries. Ceramics International 2016, 42, 820–827. doi:10.1016/j.ceramint.2015.09.003
  • Yan, X. Ph.D. Thesis, Jan 1, 2016.
  • Jeon, Y.; Han, X.; Fu, K.; Dai, J.; Kim, J. H.; Hu, L.; Song, T.; Paik, U. Flash-induced reduced graphene oxide as a Sn anode host for high performance sodium ion batteries. Journal of Materials Chemistry A 2016, 4, 18306–18313. doi:10.1039/c6ta07582g
  • Arbizzani, C.; Da Col, L.; De Giorgio, F.; Mastragostino, M.; Soavi, F. Reduced Graphene Oxide in Cathode Formulations Based on LiNi0.5Mn1.5O4. Journal of The Electrochemical Society 2015, 162, A2174–A2179. doi:10.1149/2.0921510jes
  • Boningari, T.; Ettireddy, P. R.; Somogyvari, A.; Liu, Y.; Vorontsov, A. V.; McDonald, C. A.; Smirniotis, P. G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. Journal of Catalysis 2015, 325, 145–155. doi:10.1016/j.jcat.2015.03.002
  • Srivastava, M.; Singh, J.; Kuila, T.; Layek, R. K.; Kim, N. H.; Lee, J. H. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 2015, 7, 4820–4868. doi:10.1039/c4nr07068b
Other Beilstein-Institut Open Science Activities