Beilstein J. Nanotechnol. 2012, 3, 556–563. https://doi.org/10.3762/bjnano.3.64
Supporting Information File 1: The animation in Supporting Information File 1 shows a real time observation of the recruitment of GFP-XRCC1 to two charged particle tracks traversing the nucleus of a living MEF cell during high energy (1 GeV/n) uranium irradiation. From these 3-D image stacks, movies were generated by making maximum projections of the fluorescence intensity using Image J (http://rsb.info.nih.gov/ij/). Red color indicates Cherry-tagged HP1α (marking chromocenters), green color GFP-XRCC1. Total imaging time: 9.5 min. Shot noise (due to neutron scattering) indicates the irradiation time points. Please note the fast GFP-XRCC1 recruitment along tracks, disappearance of euchromatic foci (green) and the prolonged retention of heterochromatic GFP-XRCC1 (yellow, overlapping HP1α) in the left radiation track. | ||
Format: AVI | Size: 384.4 KB | Download |
Supporting Information File 2: Supporting Information File 2 is a high resolution animation showing real time GFP-XRCC1 recruitment to the high energy uranium ion track traversing a single MEF chromocenter (red, marked by Cherry-HP1α). Note the billowing motion of the damaged domain (XRCC1, green; appears yellow due to HP1α overlap in heterochromatin) and a drift toward the chromocenter periphery. | ||
Format: AVI | Size: 504.2 KB | Download |
Article Citation | |
Download RIS (Reference Manager) | Download BIB (BIBTEX) |
Cited References | |
Download RIS (Reference Manager) | Download BIB (BIBTEX) |