Nanolesions induced by heavy ions in human tissues: Experimental and theoretical studies

Marcus Bleicher, Lucas Burigo, Marco Durante, Maren Herrlitz, Michael Krämer, Igor Mishustin, Iris Müller, Francesco Natale, Igor Pshenichnov, Stefan Schramm, Gisela Taucher-Scholz and Cathrin Wälzlein

Beilstein J. Nanotechnol. 2012, 3, 556–563. https://doi.org/10.3762/bjnano.3.64

Supporting Information

Supporting Information File 1: The animation in Supporting Information File 1 shows a real time observation of the recruitment of GFP-XRCC1 to two charged particle tracks traversing the nucleus of a living MEF cell during high energy (1 GeV/n) uranium irradiation. From these 3-D image stacks, movies were generated by making maximum projections of the fluorescence intensity using Image J (http://rsb.info.nih.gov/ij/). Red color indicates Cherry-tagged HP1α (marking chromocenters), green color GFP-XRCC1. Total imaging time: 9.5 min. Shot noise (due to neutron scattering) indicates the irradiation time points. Please note the fast GFP-XRCC1 recruitment along tracks, disappearance of euchromatic foci (green) and the prolonged retention of heterochromatic GFP-XRCC1 (yellow, overlapping HP1α) in the left radiation track.
Format: AVI Size: 384.4 KB Download
Supporting Information File 2: Supporting Information File 2 is a high resolution animation showing real time GFP-XRCC1 recruitment to the high energy uranium ion track traversing a single MEF chromocenter (red, marked by Cherry-HP1α). Note the billowing motion of the damaged domain (XRCC1, green; appears yellow due to HP1α overlap in heterochromatin) and a drift toward the chromocenter periphery.
Format: AVI Size: 504.2 KB Download
Back To Article

Latest Articles

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  1. Agnes-Valencia Weiss,
  2. Daniel Schorr,
  3. Julia K. Metz,
  4. Metin Yildirim,
  5. Saeed Ahmad Khan and
  6. Marc Schneider
  • Full Research Paper
  • Published 16 Aug 2022
Graphical Abstract

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  1. Sarani Sen,
  2. Anurag Roy,
  3. Ambarish Sanyal and
  4. Parukuttyamma Sujatha Devi
  • Full Research Paper
  • Published 28 Jul 2022
Graphical Abstract

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

  • Full Research Paper
  • Published 26 Jul 2022
Graphical Abstract

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

  • Full Research Paper
  • Published 25 Jul 2022
Graphical Abstract

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Design and selection of peptides to block the SARS-CoV-2 receptor binding domain by molecular docking

  1. Kendra Ramirez-Acosta,
  2. Ivan A. Rosales-Fuerte,
  3. J. Eduardo Perez-Sanchez,
  4. Alfredo Nuñez-Rivera,
  5. Josue Juarez and
  6. Ruben D. Cadena-Nava
  • Full Research Paper
  • Published 22 Jul 2022
Graphical Abstract

Beilstein J. Nanotechnol. 2022, 13, 699–711, doi:10.3762/bjnano.13.62

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  1. Hien Thi Thu Pham,
  2. Jonghyeok Yun,
  3. So Yeun Kim,
  4. Sang A Han,
  5. Jung Ho Kim,
  6. Jong-Won Lee and
  7. Min-Sik Park
  • Full Research Paper
  • Published 21 Jul 2022
Graphical Abstract

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

  • Full Research Paper
  • Published 20 Jul 2022
Graphical Abstract

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

  • Full Research Paper
  • Published 19 Jul 2022
Graphical Abstract

Beilstein J. Nanotechnol. 2022, 13, 675–681, doi:10.3762/bjnano.13.59

Latest Thematic Issues

Other Beilstein-Institut Open Science Activities

Keep Informed

RSS Feed

Subscribe to our Latest Articles RSS Feed.

Subscribe

Follow the Beilstein-Institut

LinkedIn

Twitter: @BeilsteinInst